Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
bioRxiv ; 2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38562703

ABSTRACT

Mycobacterium bovis BCG is the vaccine against tuberculosis and an immunotherapy for bladder cancer. When administered intravenously, BCG reprograms bone marrow hematopoietic stem and progenitor cells (HSPCs), leading to heterologous protection against infections. Whether HSPC-reprogramming contributes to the anti-tumor effects of BCG administered into the bladder is unknown. We demonstrate that BCG administered in the bladder in both mice and humans reprograms HSPCs to amplify myelopoiesis and functionally enhance myeloid cell antigen presentation pathways. Reconstitution of naive mice with HSPCs from bladder BCG-treated mice enhances anti-tumor immunity and tumor control, increases intratumor dendritic cell infiltration, reprograms pro-tumorigenic neutrophils, and synergizes with checkpoint blockade. We conclude that bladder BCG acts systemically, reprogramming HSPC-encoded innate immunity, highlighting the broad potential of modulating HSPC phenotypes to improve tumor immunity.

2.
Cell ; 186(18): 3882-3902.e24, 2023 08 31.
Article in English | MEDLINE | ID: mdl-37597510

ABSTRACT

Inflammation can trigger lasting phenotypes in immune and non-immune cells. Whether and how human infections and associated inflammation can form innate immune memory in hematopoietic stem and progenitor cells (HSPC) has remained unclear. We found that circulating HSPC, enriched from peripheral blood, captured the diversity of bone marrow HSPC, enabling investigation of their epigenomic reprogramming following coronavirus disease 2019 (COVID-19). Alterations in innate immune phenotypes and epigenetic programs of HSPC persisted for months to 1 year following severe COVID-19 and were associated with distinct transcription factor (TF) activities, altered regulation of inflammatory programs, and durable increases in myelopoiesis. HSPC epigenomic alterations were conveyed, through differentiation, to progeny innate immune cells. Early activity of IL-6 contributed to these persistent phenotypes in human COVID-19 and a mouse coronavirus infection model. Epigenetic reprogramming of HSPC may underlie altered immune function following infection and be broadly relevant, especially for millions of COVID-19 survivors.


Subject(s)
COVID-19 , Epigenetic Memory , Post-Acute COVID-19 Syndrome , Animals , Humans , Mice , Cell Differentiation , COVID-19/immunology , Disease Models, Animal , Hematopoietic Stem Cells , Inflammation/genetics , Trained Immunity , Monocytes/immunology , Post-Acute COVID-19 Syndrome/genetics , Post-Acute COVID-19 Syndrome/immunology , Post-Acute COVID-19 Syndrome/pathology
3.
Nature ; 583(7818): 852-857, 2020 07.
Article in English | MEDLINE | ID: mdl-32699416

ABSTRACT

Complex organisms can rapidly induce select genes in response to diverse environmental cues. This regulation occurs in the context of large genomes condensed by histone proteins into chromatin. The sensing of pathogens by macrophages engages conserved signalling pathways and transcription factors to coordinate the induction of inflammatory genes1-3. Enriched integration of histone H3.3, the ancestral histone H3 variant, is a general feature of dynamically regulated chromatin and transcription4-7. However, how chromatin is regulated at induced genes, and what features of H3.3 might enable rapid and high-level transcription, are unknown. The amino terminus of H3.3 contains a unique serine residue (Ser31) that is absent in 'canonical' H3.1 and H3.2. Here we show that this residue, H3.3S31, is phosphorylated (H3.3S31ph) in a stimulation-dependent manner along rapidly induced genes in mouse macrophages. This selective mark of stimulation-responsive genes directly engages the histone methyltransferase SETD2, a component of the active transcription machinery, and 'ejects' the elongation corepressor ZMYND118,9. We propose that features of H3.3 at stimulation-induced genes, including H3.3S31ph, provide preferential access to the transcription apparatus. Our results indicate dedicated mechanisms that enable rapid transcription involving the histone variant H3.3, its phosphorylation, and both the recruitment and the ejection of chromatin regulators.


Subject(s)
Histones/chemistry , Histones/metabolism , Transcription, Genetic , Up-Regulation/genetics , Animals , Cell Cycle Proteins/genetics , Cell Cycle Proteins/metabolism , Cells, Cultured , Co-Repressor Proteins/genetics , Co-Repressor Proteins/metabolism , DNA-Binding Proteins/genetics , DNA-Binding Proteins/metabolism , Histone-Lysine N-Methyltransferase/genetics , Histone-Lysine N-Methyltransferase/metabolism , Humans , I-kappa B Kinase/chemistry , I-kappa B Kinase/metabolism , Macrophages/metabolism , Male , Methylation , Mice , Models, Molecular , Phosphorylation
4.
J Clin Invest ; 130(5): 2542-2559, 2020 05 01.
Article in English | MEDLINE | ID: mdl-32027622

ABSTRACT

Curing HIV infection will require the elimination of a reservoir of infected CD4+ T cells that persists despite HIV-specific cytotoxic T cell (CTL) responses. Although viral latency is a critical factor in this persistence, recent evidence also suggests a role for intrinsic resistance of reservoir-harboring cells to CTL killing. This resistance may have contributed to negative outcomes of clinical trials, where pharmacologic latency reversal has thus far failed to drive reductions in HIV reservoirs. Through transcriptional profiling, we herein identified overexpression of the prosurvival factor B cell lymphoma 2 (BCL-2) as a distinguishing feature of CD4+ T cells that survived CTL killing. We show that the inducible HIV reservoir was disproportionately present in BCL-2hi subsets in ex vivo CD4+ T cells. Treatment with the BCL-2 antagonist ABT-199 was not sufficient to drive reductions in ex vivo viral reservoirs when tested either alone or with a latency-reversing agent (LRA). However, the triple combination of strong LRAs, HIV-specific T cells, and a BCL-2 antagonist uniquely enabled the depletion of ex vivo viral reservoirs. Our results provide rationale for novel therapeutic approaches targeting HIV cure and, more generally, suggest consideration of BCL-2 antagonism as a means of enhancing CTL immunotherapy in other settings, such as cancer.


Subject(s)
HIV/immunology , HIV/pathogenicity , Proto-Oncogene Proteins c-bcl-2/antagonists & inhibitors , T-Lymphocytes, Cytotoxic/immunology , T-Lymphocytes, Cytotoxic/virology , Adult , Antiretroviral Therapy, Highly Active , Bridged Bicyclo Compounds, Heterocyclic/pharmacology , CD4-Positive T-Lymphocytes/classification , CD4-Positive T-Lymphocytes/immunology , CD4-Positive T-Lymphocytes/virology , Coculture Techniques , Combined Modality Therapy , Cytotoxicity, Immunologic/genetics , Disease Reservoirs/virology , Female , Gene Expression Profiling , HIV/physiology , HIV Infections/immunology , HIV Infections/therapy , HIV Infections/virology , Humans , In Vitro Techniques , Male , Middle Aged , Proto-Oncogene Proteins c-bcl-2/immunology , Sulfonamides/pharmacology , Virus Latency/drug effects
SELECTION OF CITATIONS
SEARCH DETAIL
...