Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Front Microbiol ; 10: 772, 2019.
Article in English | MEDLINE | ID: mdl-31139154

ABSTRACT

The processes regulating nitrification in soils are not entirely understood. Here we provide evidence that nitrification rates in soil may be affected by complexed nitrate molecules and microbial volatile organic compounds (mVOCs) produced during nitrification. Experiments were carried out to elucidate the overall nature of mVOCs and biogenic nitrates produced by nitrifiers, and their effects on nitrification and redox metabolism. Soils were incubated at three levels of biogenic nitrate. Soils containing biogenic nitrate were compared with soils containing inorganic fertilizer nitrate (KNO3) in terms of redox metabolism potential. Repeated NH4-N addition increased nitrification rates (mM NO3 1- produced g-1 soil d-1) from 0.49 to 0.65. Soils with higher nitrification rates stimulated (p < 0.01) abundances of 16S rRNA genes by about eight times, amoA genes of nitrifying bacteria by about 25 times, and amoA genes of nitrifying archaea by about 15 times. Soils with biogenic nitrate and KNO3 were incubated under anoxic conditions to undergo anaerobic respiration. The maximum rates of different redox metabolisms (mM electron acceptors reduced g-1 soil d-1) in soil containing biogenic nitrate followed as: NO3 1- reduction 4.01 ± 0.22, Fe3+ reduction 5.37 ± 0.12, SO4 2- reduction 9.56 ± 0.16, and CH4 production (µg g-1 soil) 0.46 ± 0.05. Biogenic nitrate inhibited denitrificaton 1.4 times more strongly compared to mineral KNO3. Raman spectra indicated that aliphatic hydrocarbons increased in soil during nitrification, and these compounds probably bind to NO3 to form biogenic nitrate. The mVOCs produced by nitrifiers enhanced (p < 0.05) nitrification rates and abundances of nitrifying bacteria. Experiments suggest that biogenic nitrate and mVOCs affect nitrification and redox metabolism in soil.

2.
Ecotoxicol Environ Saf ; 157: 409-416, 2018 Aug 15.
Article in English | MEDLINE | ID: mdl-29655156

ABSTRACT

Climate change may increase the pest infestation leading to intensive use of insecticides. However, the effect of insecticide and climate factors on soil methane (CH4) consumption is less understood. A laboratory experiment was carried out to evaluate the effect of temperature (15 °C, 35 °C, and 45 °C), moisture holding capacity (MHC) (60%, 100%), biochar (0%, 1%) and chlorpyrifos (0 ppm, 10 ppm) on CH4 consumption and microbial abundance in a tropical Vertisol of central India. Methane consumption rate k (ng CH4 consumed g-1 soil d-1) varied from 0.065 ±â€¯0.005 to 0.608 ±â€¯0.018. Lowest k was in 15 °C-60% moisture holding capacity (MHC)-no biochar and with 10 ppm chlorpyrifos. Highest k was in 35 °C-100% MHC-1% biochar and without (0 ppm) chlorpyrifos. Cumulative CO2 production (ng CO2 produced g-1 soil d-1) varied from 446 ±â€¯15 to 1989 ±â€¯116. Both CH4 consumption and CO2 production peaked in the treatment of 35 °C-100% MHC-1% biochar. Chlorpyrifos inhibited CH4 consumption irrespective of treatments. Abundance of 16S rRNA of eubacteria (× 106 g-1 soil) varied from 2.33 ±â€¯0.58 to 85.67 ±â€¯7.00. Abundance of 16S rRNA genes representing Actinomycetes (× 104 g-1 soil) varied from 7.67 ±â€¯1.53 and pmoA gene (Methanotrophs) (× 105 g-1 soil) varied from 1.23 ±â€¯0.59 to 34.33 ±â€¯6.51. Chlorpyrifos inhibited abundance of heterotrophic bacteria and methanotrophs but stimulated actinomycetes. Biochar stimulated the CH4 consumption, CO2 production and microbial abundance. Study highlighted that use of chlorpyrifos under climate change factors may inhibit CH4 consumption but the use of biochar may alleviate the negative effect of the chlorpyrifos.


Subject(s)
Charcoal/analysis , Chlorpyrifos/analysis , Climate , Insecticides/analysis , Methane/metabolism , Soil Microbiology , Actinobacteria/isolation & purification , Bacteria/isolation & purification , Carbon Dioxide/analysis , Chemical Phenomena , DNA, Bacterial/isolation & purification , India , RNA, Ribosomal, 16S/isolation & purification , Soil/chemistry , Soil Pollutants/analysis
3.
Can J Microbiol ; 63(10): 822-833, 2017 Oct.
Article in English | MEDLINE | ID: mdl-28759736

ABSTRACT

The complex role of phylloplane microorganisms is less understood than that of rhizospheric microorganisms in lieu of their pivotal role in plant's sustainability. This experiment aims to study the diversity of the culturable phylloplane bacteria of Jatropha curcas and evaluate their growth-promoting activities towards maize seedling vigor. Heterotrophic bacteria were isolated from the phylloplane of J. curcas and their 16S rRNA genes were sequenced. Sequences of the 16S rRNA gene were very similar to those of species belonging to the classes Bacillales (50%), Gammaproteobacteria (21.8%), Betaproteobacteria (15.6%), and Alphaproteobacteria (12.5%). The phylloplane bacteria preferred to utilize alcohol rather than monosaccharides and polysaccharides as a carbon source. Isolates exhibited ACC (1-aminocyclopropane-1-carboxylic acid) deaminase, phosphatase, potassium solubilization, and indole acetic acid (IAA) production activities. The phosphate-solubilizing capacity (mg of PO4 solubilized by 108 cells) varied from 0.04 to 0.21. The IAA production potential (µg IAA produced by 108 cells in 48 h) of the isolates varied from 0.41 to 9.29. Inoculation of the isolates to maize seed significantly increased shoot and root lengths of maize seedlings. A linear regression model of the plant-growth-promoting activities significantly correlated (p < 0.01) with the growth parameters. Similarly, a correspondence analysis categorized ACC deaminase and IAA production as the major factors contributing 41% and 13.8% variation, respectively, to the growth of maize seedlings.


Subject(s)
Bacteria/isolation & purification , Jatropha/microbiology , Zea mays/microbiology , Amino Acids, Cyclic/metabolism , Bacteria/genetics , Bacteria/metabolism , Carbon-Carbon Lyases/metabolism , Indoleacetic Acids/metabolism , Plant Leaves/growth & development , Plant Leaves/microbiology , RNA, Ribosomal, 16S/genetics , Seedlings/growth & development , Seedlings/microbiology , Seeds/growth & development , Seeds/microbiology , Zea mays/enzymology , Zea mays/growth & development
SELECTION OF CITATIONS
SEARCH DETAIL
...