Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Article in English | MEDLINE | ID: mdl-38083324

ABSTRACT

Prosthetic users need reliable control over their assistive devices to regain autonomy and independence, particularly for locomotion tasks. Despite the potential for myoelectric signals to reflect the users' intentions more accurately than external sensors, current motorized prosthetic legs fail to utilize these signals, thus hindering natural control. A reason for this challenge could be the insufficient accuracy of locomotion detection when using muscle signals in activities outside the laboratory, which may be due to factors such as suboptimal signal recording conditions or inaccurate control algorithms.This study aims to improve the accuracy of detecting locomotion during gait by utilizing classification post-processing techniques such as Linear Discriminant Analysis with rejection thresholds. We utilized a pre-recorded dataset of electromyography, inertial measurement unit sensor, and pressure sensor recordings from 21 able-bodied participants to evaluate our approach. The data was recorded while participants were ambulating between various surfaces, including level ground walking, stairs, and ramps. The results of this study show an average improvement of 3% in accuracy in comparison with using no post-processing (p-value < 0.05). Participants with lower classification accuracy profited more from the algorithm and showed greater improvement, up to 8% in certain cases. This research highlights the potential of classification post-processing methods to enhance the accuracy of locomotion detection for improved prosthetic control algorithms when using electromyogram signals.Clinical Relevance- Decoding of locomotion intent can be improved using post-processing techniques thus resulting in a more reliable control of lower limb prostheses.


Subject(s)
Gait , Locomotion , Humans , Gait/physiology , Locomotion/physiology , Walking/physiology , Electromyography/methods , Muscle, Skeletal/physiology
2.
IEEE Trans Med Robot Bionics ; 5(3): 547-562, 2023 Aug.
Article in English | MEDLINE | ID: mdl-37655190

ABSTRACT

Most amputations occur in lower limbs and despite improvements in prosthetic technology, no commercially available prosthetic leg uses electromyography (EMG) information as an input for control. Efforts to integrate EMG signals as part of the control strategy have increased in the last decade. In this systematic review, we summarize the research in the field of lower limb prosthetic control using EMG. Four different online databases were searched until June 2022: Web of Science, Scopus, PubMed, and Science Direct. We included articles that reported systems for controlling a prosthetic leg (with an ankle and/or knee actuator) by decoding gait intent using EMG signals alone or in combination with other sensors. A total of 1,331 papers were initially assessed and 121 were finally included in this systematic review. The literature showed that despite the burgeoning interest in research, controlling a leg prosthesis using EMG signals remains challenging. Specifically, regarding EMG signal quality and stability, electrode placement, prosthetic hardware, and control algorithms, all of which need to be more robust for everyday use. In the studies that were investigated, large variations were found between the control methodologies, type of research participant, recording protocols, assessments, and prosthetic hardware.

3.
Sci Rep ; 12(1): 10218, 2022 06 17.
Article in English | MEDLINE | ID: mdl-35715459

ABSTRACT

Robotic prostheses controlled by myoelectric signals can restore limited but important hand function in individuals with upper limb amputation. The lack of individual finger control highlights the yet insurmountable gap to fully replacing a biological hand. Implanted electrodes around severed nerves have been used to elicit sensations perceived as arising from the missing limb, but using such extra-neural electrodes to record motor signals that allow for the decoding of phantom movements has remained elusive. Here, we showed the feasibility of using signals from non-penetrating neural electrodes to decode intrinsic hand and finger movements in individuals with above-elbow amputations. We found that information recorded with extra-neural electrodes alone was enough to decode phantom hand and individual finger movements, and as expected, the addition of myoelectric signals reduced classification errors both in offline and in real-time decoding.


Subject(s)
Artificial Limbs , Hand , Amputation, Surgical , Electrodes, Implanted , Electromyography , Hand/innervation , Humans , Movement/physiology , Upper Extremity
4.
Annu Int Conf IEEE Eng Med Biol Soc ; 2021: 4600-4604, 2021 11.
Article in English | MEDLINE | ID: mdl-34891537

ABSTRACT

In research on lower limb prostheses, safety during testing and training is paramount. Lower limb prosthesis users risk unintentional loss of balance that can result in injury, fear of falling, and overall decreased confidence in their prosthetic leg. Here, we present a protocol for managing the risks during evaluation of active prosthetic legs with modifiable control systems. We propose graded safety levels, each of which must be achieved before advancing to the next one, from laboratory bench testing to independent ambulation in real-world environments.


Subject(s)
Accidental Falls , Artificial Limbs , Accidental Falls/prevention & control , Humans , Lower Extremity , Postural Balance , Risk Management
5.
Brain Topogr ; 34(4): 467-477, 2021 07.
Article in English | MEDLINE | ID: mdl-33909193

ABSTRACT

Nowadays, the brain-computer interface (BCI) systems attract much more attention than before, yet they have not found their ways into our lives since their accuracy is not satisfying. Error Related Potential (ErRP) is a potential that occurs in human brain signals when an unintended event happens, against ones' will and thoughts. An example is the occurrence of an error in BCI systems. Investigation of the ErRP could enable researchers to increase the accuracy of BCI systems by detecting instances of inaccuracy in the system. In this research the effects of two parameters on the ErRP are studied: (1) The Motor Imagery Time, also known as Inter-Stimulus Interval (ISI) and (2) different types of feedback (Visual and Tactile). The statistical analysis of the ErRP characteristics showed that feedback type meaningfully affects the ErRP in a cue-paced BCI system and it will affect the time of occurrence of this potential. To validate the proposed idea, different feature extraction, and classification techniques were used for the classification of the BCI system responses. It was shown that by proper selection of the parameters and features, the accuracy of the system could be improved. Tactile feedback together with higher ISI could increase the accuracy of finding erroneous trials up to 90%. The proposed method's accuracy was significantly higher (p-value < 0.05) compared to other methods of feature extraction.


Subject(s)
Brain-Computer Interfaces , Brain , Electroencephalography , Feedback , Humans , Touch
SELECTION OF CITATIONS
SEARCH DETAIL
...