Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Main subject
Language
Publication year range
1.
J Environ Health Sci Eng ; 21(1): 239-254, 2023 Jun.
Article in English | MEDLINE | ID: mdl-37159740

ABSTRACT

A series of polypyrrole doped TiO2-SiO2 nanohybrids (Ppy/TS NHs) were synthesized thru in-situ oxidation polymerization by varying weight ratio of pyrrole. The structural analysis of NHs were characterized by X-ray Diffraction (XRD) spectra, UV-visible (UV-Vis) spectra and X-ray Photoelectron spectra (XPS) confirmed synthesis of nanomaterials. Surface and morphological study done by adopting, Scanning Electron Microscopy (SEM), Energy Dispersive Spectroscopy (EDS), Transmittance Electron Microscopy (TEM) and Brunauer-Emmett-Teller (BET) analysis confirmed the homogenous distribution, nano range size formation and mesoporous nature of nanohybrids. Further, electrochemical behavior of synthesized NHs investigated by adopting Electrochemical Impedance Spectroscopy (EIS) showed good kinetic behaviour and electron transport tendency. The nanohybrids and precursors were examined for photocatalytic degradation of methylene blue (MB) dye and revealed enhanced degradation tendency for the NHs series photocatalysts. It was found that variation of pyrrole (0.1 to 0.3 g) to TS nanocomposites (TS Nc) increased the photocatalytic potential of TS Nc. The maximum photodegradation efficacy was found to be 90.48% in 120 min for Ppy/TS0.2 NHs under direct solar light. Additionally, Ppy/TS0.2 NHs performed appreciably towards antibacterial studies against some Gram-positive and Gram-negative deleterious bacteria, Escherichia coli, Klebsiella pneumoniae, Staphylococcus aureus, Shigella flexneri microbes.

2.
Environ Sci Pollut Res Int ; 30(44): 98701-98717, 2023 Sep.
Article in English | MEDLINE | ID: mdl-36334208

ABSTRACT

Herein, the mechanism of corrosion prevention of mild steel (MS) by extract of Cuscuta reflexa/Amarbel (AME) as green inhibitor is explained by gravitational, electrochemical measurements. The viability of neat extract and after adding an intensifier was investigated as corrosion inhibitor for MS in hydrochloric acid. The presence of electron-rich moieties in AME was characterized through Fourier-transform infrared spectroscopy (FTIR). Furthermore, polarization measurements showed that AME acted as a mixed type inhibitor against corrosion. The formulation of 100 ppm AME with 50 ppm polyethylene glycol 400 (PEG400) as an intensifier showed inhibition efficiency of 97.51% for MS in 0.5 M HCl. The protection of MS in (AME + PEG) formulation was also assessed through the Langmuir, Freundlich, and Flory-Huggins adsorption isotherm model. The surface studies of the MS were examined by atomic force microscopy (AFM) and scanning electron microscopy (SEM) that indicated a smoothened surface of the metal in the presence of the studied compounds. XPS study was executed to analyze the interaction of the inhibitor with the metal surface. In addition, computational quantum study provides the molecular structural relationship with corrosion inhibitive competence of the extract.


Subject(s)
Cuscuta , Steel/chemistry , Corrosion , Acids/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...