Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
J Phys Chem B ; 128(20): 4922-4930, 2024 May 23.
Article in English | MEDLINE | ID: mdl-38733344

ABSTRACT

The disaccharide trehalose is generally acknowledged as a superior stabilizer of proteins and other biomolecules in aqueous environments. Despite many theories aiming to explain this, the stabilization mechanism is still far from being fully understood. This study compares the stabilizing properties of trehalose with those of the structurally similar disaccharide sucrose. The stability has been evaluated for the two proteins, lysozyme and myoglobin, at both low and high temperatures by determining the glass transition temperature, Tg, and the denaturation temperature, Tden. The results show that the sucrose-containing samples exhibit higher Tden than the corresponding trehalose-containing samples, particularly at low water contents. The better stabilizing effect of sucrose at high temperatures may be explained by the fact that sucrose, to a greater extent, binds directly to the protein surface compared to trehalose. Both sugars show Tden elevation with an increasing sugar-to-protein ratio, which allows for a more complete sugar shell around the protein molecules. Finally, no synergistic effects were found by combining trehalose and sucrose. Conclusively, the exact mechanism of protein stabilization may vary with the temperature, as influenced by temperature-dependent interactions between the protein, sugar, and water. This variability can make trehalose to a superior stabilizer under some conditions and sucrose under others.


Subject(s)
Calorimetry, Differential Scanning , Muramidase , Myoglobin , Sucrose , Trehalose , Trehalose/chemistry , Sucrose/chemistry , Muramidase/chemistry , Muramidase/metabolism , Myoglobin/chemistry , Protein Stability , Animals , Temperature
2.
RSC Adv ; 14(17): 11921-11931, 2024 Apr 10.
Article in English | MEDLINE | ID: mdl-38623289

ABSTRACT

The two disaccharides, trehalose and sucrose, have been compared in many studies due to their structural similarity. Both possess the ability to stabilise and reduce aggregation of proteins. Trehalose has also been shown to inhibit the formation of highly structured protein aggregates called amyloid fibrils. This study aims to compare how the thermal stability of the protein lysozyme at low pH (2.0 and 3.5) is affected by the presence of the two disaccharides. We also address the anti-aggregating properties of the disaccharides and their inhibitory effects on fibril formation. Differential scanning calorimetry confirms that the thermal stability of lysozyme is increased by the presence of trehalose or sucrose. The effect is slightly larger for sucrose. The inhibiting effects on protein aggregation are investigated using small-angle X-ray scattering which shows that the two-component system consisting of lysozyme and water (Lys/H2O) at pH 2.0 contains larger aggregates than the corresponding system at pH 3.5 as well as the sugar containing systems. In addition, the results show that the particle-to-particle distance in the sugar containing systems (Lys/Tre/H2O and Lys/Suc/H2O) at pH 2.0 is longer than at pH 3.5, suggesting larger protein aggregates in the former. Finally, the characteristic distance separating ß-strands in amyloid fibrils is observed for the Lys/H2O system at pH 2.0, using wide-angle X-ray scattering, while it is not clearly observed for the sugar containing systems. This study further shows that the two disaccharides stabilise the native fold of lysozyme by increasing the denaturation temperature. However, other factors, such as a weakening of hydrophobic interactions and hydrogen bonding between proteins, might also play a role in their inhibitory effect on amyloid fibril formation.

3.
Phys Chem Chem Phys ; 25(32): 21215-21226, 2023 Aug 16.
Article in English | MEDLINE | ID: mdl-37534799

ABSTRACT

Disaccharides are well known to be efficient stabilizers of proteins, for example in the case of lyophilization or cryopreservation. However, although all disaccharides seem to exhibit bioprotective and stabilizing properties, it is clear that trehalose is generally superior compared to other disaccharides. The aim of this study was to understand this by comparing how the structural and dynamical properties of aqueous trehalose and sucrose solutions influence the protein myoglobin (Mb). The structural studies were based on neutron and X-ray diffraction in combination with empirical potential structure refinement (EPSR) modeling, whereas the dynamical studies were based on quasielastic neutron scattering (QENS) and molecular dynamics (MD) simulations. The results show that the overall differences in the structure and dynamics of the two systems are small, but nevertheless there are some important differences which may explain the superior stabilizing effects of trehalose. It was found that in both systems the protein is preferentially hydrated by water, but that this effect is more pronounced for trehalose, i.e. trehalose forms less hydrogen bonds to the protein surface than sucrose. Furthermore, the rotational motion around dihedrals between the two glucose rings of trehalose is slower than in the case of the dihedrals between the glucose and fructose rings of sucrose. This leads to a less perturbed protein structure in the case of trehalose. The observations indicate that an aqueous environment closest to the protein molecules is beneficial for an efficient bioprotective solution.


Subject(s)
Sucrose , Trehalose , Trehalose/chemistry , Sucrose/chemistry , Disaccharides/chemistry , Proteins , Water/chemistry , Glucose
4.
Colloids Surf B Biointerfaces ; 226: 113304, 2023 Jun.
Article in English | MEDLINE | ID: mdl-37062225

ABSTRACT

Silicone elastomers like polydimethylsiloxane (PDMS) possess a combination of attractive material and biological properties motivating their widespread use in biomedical applications. Development of elastomers with capacity to deliver active therapeutic substances in the form of drugs is of particular interest to produce medical devices with added functionality. In this work, silicone-based lyotropic liquid crystal elastomers with drug-eluting functionality were developed using PDMS and triblock copolymer (diacrylated Pluronic F127, DA-F127). Various ternary PDMS-DA-F127-H2O compositions were explored and evaluated. Three compositions were found to have specific properties of interest and were further investigated for their nanostructure, mechanical properties, water retention capacity, and morphology. The ability of the elastomers to encapsulate and release polar and nonpolar substances was demonstrated using vancomycin and ibuprofen as model drugs. It was shown that the materials could deliver both types of drugs with a sustained release profile for up to 6 and 5 days for vancomycin and ibuprofen, respectively. This works demonstrates a lyotropic liquid crystal, silicone-based elastomer with tailorable mechanical properties, water retention capacity and ability to host and release polar and nonpolar active substances.


Subject(s)
Elastomers , Liquid Crystals , Elastomers/chemistry , Liquid Crystals/chemistry , Ibuprofen , Vancomycin , Silicones , Water
SELECTION OF CITATIONS
SEARCH DETAIL
...