Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
J Chromatogr A ; 1236: 207-14, 2012 May 04.
Article in English | MEDLINE | ID: mdl-22446078

ABSTRACT

Poly(sodium 10-undecenyl sulfate) (poly-SUS), poly(sodium N-undecenyl leucinate) (poly-SUL) and their five molecular binary mixed micelles with varied SUS:SUL composition were prepared and used as pseudostationary phases in micellar electrokinetic chromatography (MEKC). Linear solvation energy relationships (LSERs) model and free energy of transfer studies were used to characterize the retention behavior and the selectivity differences among the seven surfactant systems. System constant differences and regression models for varied benzene derivative compounds are used to establish the selectivity differences of the seven pseudostationary phases. The cavity formation and dispersion interaction (the v system constant) and the hydrogen-bonding acidity (the b system constant) of the surfactant systems were found to have the most significant influence on selectivity and MEKC retention. The molecular micelle with sulfate head group, poly-SUS, was found to be more hydrogen-bond acidic than the molecular micelle with leucinate head group, poly-SUL. The other system constants (a, s and e) have modest effect on the retention and selectivity of the benzene derivatives. The model intercept coefficients (c system constants), which are negative for all surfactant systems have unusually large values. The free energy changes of transfer for the functional groups studied have all negative values except phenol and benzyl alcohol. Selectivity differences between pseudostationary phases were also compared by plotting the log k values against each other and were found to agree well with LSER results.


Subject(s)
Leucine/analogs & derivatives , Micelles , Models, Chemical , Polymers/chemistry , Undecylenic Acids/chemistry , Chromatography, Micellar Electrokinetic Capillary , Hydrogen Bonding , Leucine/chemistry , Linear Models , Organic Chemicals/chemistry , Thermodynamics
2.
J Chromatogr A ; 1217(3): 375-85, 2010 Jan 15.
Article in English | MEDLINE | ID: mdl-19942224

ABSTRACT

Sodium 10-undecenyl sulfate (SUS), sodium 10-undecenyl leucinate (SUL) and their five different mixed micelles at varied percent mole ratios were prepared. The critical micelle concentration (CMC), C(20), gamma(CMC), partial specific volume, methylene group selectivity, mobilities and elution window were determined using a variety of analytical techniques. These surfactant systems were then evaluated as novel pseudostationary phases in micellar electrokinetic chromatography (MEKC). As a commonly used pseudostationary phase in MEKC, sodium dodecyl sulfate (SDS) was also evaluated. The CMC values of SUS and SUL were found to be 26 and 16 mM, respectively, whereas the CMC of mixed surfactants was found to be very similar to that of SUL. The C(20) values decreased dramatically as the concentration of SUL is increased in the mixed micelle. An increase in SUL content gradually increased the methylene group selectivity making the binary mixed surfactants more hydrophobic. Linear solvation energy relationships (LSERs) and free energy of transfer studies were also applied to predict the selectivity differences between the surfactant systems. The cohesiveness and the hydrogen bond acidic character of the surfactant systems were found to have the most significant influence on selectivity and MEKC retention. The SUS and SDS showed the strongest while SUL showed the weakest hydrogen bond donating capacity. The basicity, interaction with n and pi-electrons of the solute and dipolarity/polarizability were the least significant factors in LSER model for the surfactant systems studied. Free energies of transfer of selected functional groups in each surfactant systems were also calculated and found to be in good agreement with the LSER data.


Subject(s)
Chromatography, Micellar Electrokinetic Capillary/methods , Micelles , Sodium Compounds/chemistry , Undecylenic Acids/chemistry , Benzene Derivatives/chemistry , Chemical Phenomena , Hydrogen Bonding , Models, Molecular , Surface-Active Agents/chemistry , Thermodynamics
SELECTION OF CITATIONS
SEARCH DETAIL
...