Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Heliyon ; 10(4): e26106, 2024 Feb 29.
Article in English | MEDLINE | ID: mdl-38390049

ABSTRACT

Olfactory marker protein (OMP) is extensively studied in mature olfactory receptor neurons (ORNs) for understanding olfaction physiology. However, no bibliometric analysis on this topic exists. We conducted a bibliometric analysis of OMP research articles, wherein the publication count was assessed by year, country, journal, and author, collaboration by country, and productivity of the authors. Additionally, key terms and research themes were identified. Using the search phrase "olfactory marker protein" in Scopus, we retrieved 691 original research articles by 2487 authors since 1974. Publications showed an increasing trend, with the United States leading in quantity and collaboration. Our thematic map highlights "Olfactory bulb, regeneration, olfactory" as the primary research domain, while "olfaction, olfactory sensory neuron, glomerulus" and "olfactory receptor neurons, apoptosis, olfactory dysfunction" emerge as essential future research topics. These bibliometric findings offer insights into the global OMP research landscape, guiding researchers in potential collaborations and intriguing future research fields.

2.
J Neurosci ; 38(42): 9047-9058, 2018 10 17.
Article in English | MEDLINE | ID: mdl-30201765

ABSTRACT

Pain is regulated endogenously through both opioid and non-opioid mechanisms. We hypothesized that two novel pain modulation tasks, one drawing on context/expectations and one using voluntary reappraisal, would show differing levels of opioid dependence. Specifically, we expected that naloxone would block context-related analgesia, whereas mental imagery-based pain reappraisal would be opioid-independent.A double-blind, placebo-controlled intravenous naloxone versus saline crossover design was used. Twenty healthy volunteers completed the two modulation tasks with acute heat stimuli calibrated to induce moderate pain. In the mental imagery task, participants imagined either a "pleasant" or a "comparison" scenario during painful heat. In the relative relief task, moderate heat stimuli coincided with visual cues eliciting relief from the expectation of intense pain, and were compared with moderate heat stimuli delivered under the expectation of non-painful warmth. Both "pleasant imagery" and "relative relief" conditions significantly improved ratings of pain intensity and pleasantness during saline treatment. Indeed, the target stimuli in both tasks, which had been calibrated to induce moderate pain, were rated as mildly pleasant. Furthermore, consistently with the main hypothesis, blocking endogenous opioid signaling with naloxone did not significantly affect imagery-induced regulation of pain intensity or pleasantness. In contrast, the relative relief-induced pain regulation (i.e., context/expectation) was blocked by naloxone. We conclude that endogenous opioid signaling is necessary for expectation-related relative relief analgesia, but not for pain reappraisal through mental imagery. These results support mental imagery as a powerful and clinically relevant strategy for regulating pain affect also in patients where endogenous opioid mechanisms might be compromised.SIGNIFICANCE STATEMENT Neurotransmitter systems in the human brain can be probed through antagonist drugs. Studies using the opioid antagonist naloxone have demonstrated that the brain relies on both opioid and non-opioid mechanisms to downregulate pain. This holds clinical relevance given altered endogenous opioid processes in many chronic pain conditions. The present study used a double-blinded, placebo-controlled naloxone blockage of endogenous opioids in healthy humans to show differential opioid involvement in two pain modulation tasks. Context/expectation-driven (relative relief-related) analgesia was blocked by naloxone. In contrast, pain reappraisal through mental imagery was intact despite opioid receptor blockade, suggesting opioid independence. These results support mental imagery as a powerful, clinically relevant strategy for regulating pain as it does not rely on a functioning opioidergic system.


Subject(s)
Analgesia/methods , Imagination , Naloxone/administration & dosage , Narcotic Antagonists/administration & dosage , Pain Perception , Pain/prevention & control , Adult , Conditioning, Psychological , Cross-Over Studies , Double-Blind Method , Female , Hot Temperature , Humans , Male , Pain/psychology , Pain Measurement , Pain Perception/drug effects , Visual Perception , Young Adult
3.
Article in English | MEDLINE | ID: mdl-22537380

ABSTRACT

Malaria remains a global health problem affecting more than 515 million people all over the world including Malaysia. It is on the rise, even within unknown regions that previous to this were free of malaria. Although malaria eradication programs carried out by vector control programs are still effective, anti-malarial drugs are also used extensively for curtailing this disease. But resistance to the use of anti-malarial drugs is also increasing on a daily basis. With an increased understanding of mechanisms that cause growth, differentiation and development of malarial parasites in rodents and humans, new avenues of therapeutic approaches for controlling the growth, synchronization and development of malarial parasites are essential. Within this context, the recent discoveries related to IP3 interconnected signalling pathways, the release of Ca2+ from intracellular stores of Plasmodium, ubiquitin protease systems as a signalling pathway, and melatonin influencing the growth and differentiation of malarial parasites by its effects on these signalling pathways have opened new therapeutic avenues for arresting the growth and differentiation of malarial parasites. Indeed, the use of melatonin antagonist, luzindole, has inhibited the melatonin's effect on these signalling pathways and thereby has effectively reduced the growth and differentiation of malarial parasites. As Plasmodium has effective sensors which detect the nocturnal plasma melatonin concentrations, suppression of plasma melatonin levels with the use of bright light during the night or by anti-melatonergic drugs and by using anti-kinase drugs will help in eradicating malaria on a global level. A number of patients have been admitted with regards to the control and management of malarial growth. Patents related to the discovery of serpentine receptors on Plasmodium, essential for modulating intra parasitic melatonin levels, procedures for effective delivery of bright light to suppress plasma melatonin levels and thereby arresting the growth and elimination of malarial parasites from the blood of the host are all cited in the paper. The purpose of the paper is to highlight the importance of melatonin acting as a cue for Plasmodium faciparum growth and to discuss the ways of curbing the effects of melatonin on Plasmodium growth and for arresting its life cycle, as a method of eliminating the parasite from the host.


Subject(s)
Antimalarials/therapeutic use , Life Cycle Stages/drug effects , Malaria, Falciparum/drug therapy , Melatonin/antagonists & inhibitors , Melatonin/pharmacology , Plasmodium falciparum/growth & development , Signal Transduction/drug effects , Tryptamines/therapeutic use , Animals , Humans , Plasmodium falciparum/drug effects
SELECTION OF CITATIONS
SEARCH DETAIL
...