Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 49
Filter
1.
Pharmaceutics ; 15(7)2023 Jul 22.
Article in English | MEDLINE | ID: mdl-37514191

ABSTRACT

Retinal diseases are one of the leading causes of blindness globally. The mainstay treatments for these blinding diseases are laser photocoagulation, vitrectomy, and repeated intravitreal injections of anti-vascular endothelial growth factor (VEGF) or steroids. Unfortunately, these therapies are associated with ocular complications like inflammation, elevated intraocular pressure, retinal detachment, endophthalmitis, and vitreous hemorrhage. Recent advances in nanomedicine seek to curtail these limitations, overcoming ocular barriers by developing non-invasive or minimally invasive delivery modalities. These modalities include delivering therapeutics to specific cellular targets in the retina, providing sustained delivery of drugs to avoid repeated intravitreal injections, and acting as a scaffold for neural tissue regeneration. These next-generation nanomedicine approaches could potentially revolutionize the treatment landscape of retinal diseases. This review describes the availability and limitations of current treatment strategies and highlights insights into the advancement of future approaches using next-generation nanomedicines to manage retinal diseases.

2.
Plants (Basel) ; 12(12)2023 Jun 11.
Article in English | MEDLINE | ID: mdl-37375899

ABSTRACT

Macleaya cordata is a dominant plant of mine tailings and a zinc (Zn) accumulator with high Zn tolerance. In this study, M. cordata seedlings cultured in Hoagland solution were treated with 200 µmol·L-1 of Zn for 1 day or 7 days, and then, their leaves were taken for a comparative analysis of the transcriptomes and proteomes between the leaves of the control and Zn treatments. Differentially expressed genes included those that were iron (Fe)-deficiency-induced, such as vacuolar iron transporter VIT, ABC transporter ABCI17 and ferric reduction oxidase FRO. Those genes were significantly upregulated by Zn and could be responsible for Zn transport in the leaves of M. cordata. Differentially expressed proteins, such as chlorophyll a/b-binding proteins, ATP-dependent protease, and vacuolar-type ATPase located on the tonoplast, were significantly upregulated by Zn and, thus, could be important in chlorophyll biosynthesis and cytoplasm pH stabilization. Moreover, the changes in Zn accumulation, the production of hydrogen peroxide, and the numbers of mesophyll cells in the leaves of M. cordata were consistent with the expression of the genes and proteins. Thus, the proteins involved in the homeostasis of Zn and Fe are hypothesized to be the keys to the tolerance and accumulation of Zn in M. cordata. Such mechanisms in M. cordata can suggest novel approaches to genetically engineering and biofortifying crops.

3.
Antibiotics (Basel) ; 12(3)2023 Feb 22.
Article in English | MEDLINE | ID: mdl-36978300

ABSTRACT

The current study aimed to investigate the effects of Clostridium butyiricum on growth performance, intestinal morphology, serum biochemical response, and immunity in broiler chickens. A total of 330 commercial one-day-old, mixed-sex Ross 308 broilers were randomly divided into five treatment groups with six replicates per group. The broilers were fed the basal diet (CON), the basal diet with 150 mg/kg of aureomycin (AM), the basal diet with C. butyricum at 2 × 108 CFU/kg (CBL), the basal diet with C. butyricum at 4 × 108 CFU/kg (CBM), and the basal diet with C. butyricum at 8 × 108 CFU/kg (CBH). Results showed that the final body weight (BW) (p < 0.01; p < 0.05), ADG from day 22 to 39 (p < 0.05), and ADG from day 1 to 39 (p < 0.01; p < 0.05) were improved in a linear and quadratic response with the inclusion of C. butyricum. There were no differences in feed conversion rate (FCR) among all groups (p > 0.05). Supplementation with C. butyricum quadratically reduced the crypt depth at day 21 (p < 0.01), linearly improved the villus height in the jejunum at day 39 (p < 0.001), and linearly and quadratically increased the villus height to crypt depth (V/C) ratio in the jejunum at day 21 (p < 0.01) and day 39 (p < 0.01; p < 0.001). Dietary C. butyricum affected the thymus index at day 21 and day 39 (linear, p < 0.01), and the bursa of Fabricius index at day 39 (quadratic, p < 0.05). Compared to the AM group, the serum urea contents were decreased (p < 0.05) but the IgG contents were increased in the CBL and CBH groups at day 21 (p < 0.01); in addition, serum albumin (ALB) concentrations in all the C. butyricum-supplemented groups (p < 0.01) and IgG concentrations in the CBM group were augmented at day 39 (p < 0.05). In conclusion, dietary C. butyricum could enhance growth performance by improving jejunal morphology and stimulating immunity organ development in broilers, and could be an alternative to antibiotics in poultry feeds.

4.
Microorganisms ; 11(1)2023 Jan 04.
Article in English | MEDLINE | ID: mdl-36677423

ABSTRACT

The aim of this study was to apply a strategy to express a recombinant CLP peptide and explore its application as a product derived from natural compounds. The amphiphilic CLP peptide was hybridized from three parent peptides (CM4, LL37, and TP5) and was considered to have potent endotoxin-neutralizing activity with minimal cytotoxic and hemolytic activity. To achieve high secretion expression, an expression vector of pPICZαA-HSA-CLP was constructed by the golden gate cloning strategy before being transformed into Pichia pastoris and integrated into the genome. The recombinant CLP was purified through the Ni-NTA affinity chromatography and analyzed by SDS-PAGE and mass spectrometry. The Limulus amebocyte lysate (LAL) test exhibited that the hybrid peptide CLP inhibited lipopolysaccharides (LPS) in a dose-dependent manner and was significantly (p < 0.05) more efficient compared to the parent peptides. In addition, it essentially diminished (p < 0.05) the levels of nitric oxide and pro-inflammatory cytokines (including TNF-α, IL6, and IL-1ß) in LPS-induced mouse RAW264.7 macrophages. As an attendant to the control and the parental peptide LL37, the number of LPS-induced apoptotic cells was diminished compared to the control parental peptide LL37 (p < 0.05) with the treatment of CLP. Consequently, we concluded that the hybrid peptide CLP might be used as a therapeutic agent.

5.
Front Plant Sci ; 13: 1035627, 2022.
Article in English | MEDLINE | ID: mdl-36420021

ABSTRACT

The basic leucine zipper (bZIP) is a transcription factor family that plays critical roles in abiotic and biotic stress responses as well as plant development and growth. A comprehensive genome-wide study in Liriodendron chinense was conducted to identify 45 bZIP transcription factors (LchibZIPs), which were divided into 13 subgroups according the phylogenetic analysis. Proteins in the same subgroup shared similar gene structures and conserved domains, and a total of 20 conserved motifs were revealed in LchibZIP proteins. Gene localization analysis revealed that LchibZIP genes were unequally distributed across 16 chromosomes, and that 4 pairs of tandem and 9 segmental gene duplications existed. Concluding that segmental duplication events may be strongly associated with the amplification of the L. chinense bZIP gene family. We also assessed the collinearity of LchibZIPs between the Arabidopsis and Oryza and showed that the LchibZIP is evolutionarily closer to O. sativa as compared to the A. thaliana. The cis-regulatory element analysis showed that LchibZIPs clustered in one subfamily are involved in several functions. In addition, we gathered novel research suggestions for further exploration of the new roles of LchibZIPs from protein-protein interactions and gene ontology annotations of the LchibZIP proteins. Using the RNA-seq data and qRT-PCR we analyzed the gene expression patterns of LchibZIP genes, and showed that LchibZIP genes regulate cold stress, especially LchibZIP4 and LchibZIP7; and LchibZIP2 and LchibZIP28 which were up-regulated and down-regulated by cold stress, respectively. Studies of genetic engineering and gene function in L. chinense can benefit greatly from the thorough investigation and characterization of the L. chinense bZIP gene family.

6.
BMC Genomics ; 23(1): 708, 2022 Oct 18.
Article in English | MEDLINE | ID: mdl-36253733

ABSTRACT

BACKGROUND: The sucrose non-fermenting 1 (SNF1)-related protein kinases (SnRKs) play a vivid role in regulating plant metabolism and stress response, providing a pathway for regulation between metabolism and stress signals. Conducting identification and stress response studies on SnRKs in plants contributes to the development of strategies for tree species that are more tolerant to stress conditions. RESULTS: In the present study, a total of 30 LcSnRKs were identified in Liriodendron chinense (L. chinense) genome, which was distributed across 15 chromosomes and 4 scaffolds. It could be divided into three subfamilies: SnRK1, SnRK2, and SnRK3 based on phylogenetic analysis and domain types. The LcSnRK of the three subfamilies shared the same Ser/Thr kinase structure in gene structure and motif composition, while the functional domains, except for the kinase domain, showed significant differences. A total of 13 collinear gene pairs were detected in L. chinense and Arabidopsis thaliana (A. thaliana), and 18 pairs were detected in L. chinense and rice, suggesting that the LcSnRK family genes may be evolutionarily more closely related to rice. Cis-regulation element analysis showed that LcSnRKs were LTR and TC-rich, which could respond to different environmental stresses. Furthermore, the expression patterns of LcSnRKs are different at different times under low-temperature stress. LcSnRK1s expression tended to be down-regulated under low-temperature stress. The expression of LcSnRK2s tended to be up-regulated under low-temperature stress. The expression trend of LcSnRK3s under low-temperature stress was mainly up-or down-regulated. CONCLUSION: The results of this study will provide valuable information for the functional identification of the LcSnRK gene in the future.


Subject(s)
Liriodendron , Cold-Shock Response/genetics , Gene Expression Regulation, Plant , Liriodendron/genetics , Liriodendron/metabolism , Phylogeny , Plant Proteins/metabolism , Plants/genetics , Protein Serine-Threonine Kinases/genetics , Stress, Physiological/genetics , Sucrose
7.
Sci Rep ; 12(1): 5389, 2022 03 30.
Article in English | MEDLINE | ID: mdl-35354870

ABSTRACT

Perivascular mesenchymal cells (PMCs), which include pericytes, give rise to myofibroblasts that contribute to chronic kidney disease progression. Several PMC markers have been identified; however, PMC heterogeneity and functions are not fully understood. Here, we describe a novel subset of renal PMCs that express Meflin, a glycosylphosphatidylinositol-anchored protein that was recently identified as a marker of fibroblasts essential for cardiac tissue repair. Tracing the lineage of Meflin+ PMCs, which are found in perivascular and periglomerular areas and exhibit renin-producing potential, showed that they detach from the vasculature and proliferate under disease conditions. Although the contribution of Meflin+ PMCs to conventional α-SMA+ myofibroblasts is low, they give rise to fibroblasts with heterogeneous α-SMA expression patterns. Genetic ablation of Meflin+ PMCs in a renal fibrosis mouse model revealed their essential role in collagen production. Consistent with this, human biopsy samples showed that progressive renal diseases exhibit high Meflin expression. Furthermore, Meflin overexpression in kidney fibroblasts promoted bone morphogenetic protein 7 signals and suppressed myofibroblastic differentiation, implicating the roles of Meflin in suppressing tissue fibrosis. These findings demonstrate that Meflin marks a PMC subset that is functionally distinct from classic pericytes and myofibroblasts, highlighting the importance of elucidating PMC heterogeneity.


Subject(s)
Mesenchymal Stem Cells , Myofibroblasts , Animals , Fibroblasts/metabolism , Kidney , Mesenchymal Stem Cells/metabolism , Mice , Myofibroblasts/metabolism , Pericytes/metabolism
8.
Int J Mol Sci ; 23(5)2022 Feb 26.
Article in English | MEDLINE | ID: mdl-35269741

ABSTRACT

Damage-associated molecular patterns (DAMPs) are endogenous danger molecules released from the extracellular and intracellular space of damaged tissue or dead cells. Recent evidence indicates that DAMPs are associated with the sterile inflammation caused by aging, increased ocular pressure, high glucose, oxidative stress, ischemia, mechanical trauma, stress, or environmental conditions, in retinal diseases. DAMPs activate the innate immune system, suggesting their role to be protective, but may promote pathological inflammation and angiogenesis in response to the chronic insult or injury. DAMPs are recognized by specialized innate immune receptors, such as receptors for advanced glycation end products (RAGE), toll-like receptors (TLRs) and the NOD-like receptor family (NLRs), and purine receptor 7 (P2X7), in systemic diseases. However, studies describing the role of DAMPs in retinal disorders are meager. Here, we extensively reviewed the role of DAMPs in retinal disorders, including endophthalmitis, uveitis, glaucoma, ocular cancer, ischemic retinopathies, diabetic retinopathy, age-related macular degeneration, rhegmatogenous retinal detachment, proliferative vitreoretinopathy, and inherited retinal disorders. Finally, we discussed DAMPs as biomarkers, therapeutic targets, and therapeutic agents for retinal disorders.


Subject(s)
Alarmins , Diabetic Retinopathy , Humans , Inflammation/pathology , Receptor for Advanced Glycation End Products , Toll-Like Receptors
9.
Int J Mol Sci ; 23(3)2022 Jan 28.
Article in English | MEDLINE | ID: mdl-35163471

ABSTRACT

Cold stress limits plant geographical distribution and influences plant growth, development, and yields. Plants as sessile organisms have evolved complex biochemical and physiological mechanisms to adapt to cold stress. These mechanisms are regulated by a series of transcription factors and proteins for efficient cold stress acclimation. It has been established that the ICE-CBF-COR signaling pathway in plants regulates how plants acclimatize to cold stress. Cold stress is perceived by receptor proteins, triggering signal transduction, and Inducer of CBF Expression (ICE) genes are activated and regulated, consequently upregulating the transcription and expression of the C-repeat Binding Factor (CBF) genes. The CBF protein binds to the C-repeat/Dehydration Responsive Element (CRT/DRE), a homeopathic element of the Cold Regulated genes (COR gene) promoter, activating their transcription. Transcriptional regulations and post-translational modifications regulate and modify these entities at different response levels by altering their expression or activities in the signaling cascade. These activities then lead to efficient cold stress tolerance. This paper contains a concise summary of the ICE-CBF-COR pathway elucidating on the cross interconnections with other repressors, inhibitors, and activators to induce cold stress acclimation in plants.


Subject(s)
Plant Proteins/genetics , Plant Proteins/metabolism , Cold-Shock Response , Gene Expression Regulation, Plant , Plant Physiological Phenomena , Protein Processing, Post-Translational , Signal Transduction , Trans-Activators , Transcriptional Activation
10.
Life (Basel) ; 11(12)2021 Dec 17.
Article in English | MEDLINE | ID: mdl-34947953

ABSTRACT

Diabetic retinopathy (DR) is a microvascular complication of diabetes in the retina. Chronic hyperglycemia damages retinal microvasculature embedded into the extracellular matrix (ECM), causing fluid leakage and ischemic retinal neovascularization. Current treatment strategies include intravitreal anti-vascular endothelial growth factor (VEGF) or steroidal injections, laser photocoagulation, or vitrectomy in severe cases. However, treatment may require multiple modalities or repeat treatments due to variable response. Though DR management has achieved great success, improved, long-lasting, and predictable treatments are needed, including new biomarkers and therapeutic approaches. Small-leucine rich proteoglycans, such as decorin, constitute an integral component of retinal endothelial ECM. Therefore, any damage to microvasculature can trigger its antifibrotic and antiangiogenic response against retinal vascular pathologies, including DR. We conducted a cross-sectional study to examine the association between aqueous humor (AH) decorin levels, if any, and severity of DR. A total of 82 subjects (26 control, 56 DR) were recruited. AH was collected and decorin concentrations were measured using an enzyme-linked immunosorbent assay (ELISA). Decorin was significantly increased in the AH of DR subjects compared to controls (p = 0.0034). AH decorin levels were increased in severe DR groups in ETDRS and Gloucestershire classifications. Decorin concentrations also displayed a significant association with visual acuity (LogMAR) measurements. In conclusion, aqueous humor decorin concentrations were found elevated in DR subjects, possibly due to a compensatory response to the retinal microvascular changes during hyperglycemia.

11.
Antibiotics (Basel) ; 10(11)2021 Nov 22.
Article in English | MEDLINE | ID: mdl-34827365

ABSTRACT

This study aimed to investigate the effects of Bacillus amyloliquefaciens LFB112 on the growth performance, carcass traits, immune response, and serum biochemical parameters of broiler chickens. A total of 396 1 day old, mixed-sex commercial Ross 308 broilers with similar body weights were allotted into six treatment groups. The assigned groups were the CON group (basal diet with no supplement), AB (antibiotics) group (basal diet + 150 mg of aureomycin/kg), C+M group (basal diet + 5 × 108 CFU/kg B. amyloliquefaciens LFB112 powder with vegetative cells + metabolites), C group (basal diet + 5 × 108 CFU/kg B. amyloliquefaciens LFB112 vegetative cell powder with removed metabolites), M group (basal diet + 5 × 108 CFU/kg B. amyloliquefaciens LFB112 metabolite powder with removed vegetative cells), and CICC group (basal diet + 5 × 108 CFU/kg Bacillus subtilis CICC 20179). Results indicated that chickens in the C+M, C, and M groups had higher body weight (BW) and average daily gain (ADG) (p < 0.05) and lower feed conversion ratio (FCR) (p = 0.02) compared to the CON group. The C+M group showed the lowest abdominal fat rate compared to those in the CON, AB, and CICC groups (p < 0.05). Compared to the CON group, serum IgA and IgG levels in the C+M, C, and M groups significantly increased while declining in the AB group (p < 0.05). B. amyloliquefaciens LFB112 supplementation significantly reduced the serum triglyceride, cholesterol, urea, and creatinine levels, while increasing the serum glucose and total protein (p < 0.05). In conclusion, B. amyloliquefaciens LFB112 significantly improved the growth performance, carcass traits, immunity, and blood chemical indices of broiler chickens and may be used as an efficient broiler feed supplement.

12.
Front Immunol ; 12: 620494, 2021.
Article in English | MEDLINE | ID: mdl-34122400

ABSTRACT

The innate and adaptive immune systems act in concert to protect us from infectious agents and other harmful substances. As a state of temporary or permanent immune dysfunction, immunosuppression can make an organism more susceptible to infection, organ injury, and cancer due to damage to the immune system. It takes a long time to develop new immunomodulatory agents to prevent and treat immunosuppressive diseases, with slow progress. Toll-like receptor 2 (TLR2) agonists have been reported as potential immunomodulatory candidates due to their effective activation of immune responses. It has been demonstrated that thymopentin (TP5) could modulate immunity by binding to the TLR2 receptor. However, the fairly short half-life of TP5 greatly reduces its pharmacological potential for immunosuppression therapy. Although peptide cathelicidin 2 (CATH2) has a long half-life, it shows poor immunomodulatory activity and severe cytotoxicity, which seriously hampers its clinical development. Peptide hybridization is an effective approach for the design and engineering of novel functional peptides because hybrid peptides combine the advantages and benefits of various native peptides. In this study, to overcome all these challenges faced by the parental peptides, six hybrid peptides (CaTP, CbTP, CcTP, TPCa, TPCb, and TPCc) were designed by combining the full-length TP5 with different active fragments of CATH2. CbTP, the most potent TLR2 agonist among the six hybrid peptides, was effectively screened through in silico analysis and in vitro experiments. The CbTP peptide exhibited lower cytotoxicity than either CATH2 or TP5. Furthermore, the immunomodulatory effects of CbTP were confirmed in a CTX-immunosuppressed mouse model, which showed that CbTP has increased immunopotentiating activity and physiological stability compared to the parental peptides. CbTP successfully inhibited immunosuppression and weight loss, increased immune organ indices, and improved CD4+/CD8+ T lymphocyte subsets. In addition, CbTP significantly increased the production of the cytokine TNF-α and IL-6, and the immunoglobulins IgA, IgM, and IgG. The immunoenhancing effects of CbTP were attributed to its TLR2-binding activity, promoting the formation of the TLR2 cluster, the activation of the TLR2 receptor, and thus activation of the downstream MyD88-NF-кB signaling pathway.


Subject(s)
Peptides/metabolism , T-Lymphocytes/immunology , Thymopentin/metabolism , Toll-Like Receptor 2/agonists , Animals , Cells, Cultured , Cyclophosphamide , Cytokines , Female , Humans , Immunity , Immunity, Humoral , Immunocompromised Host , Immunomodulation , Mice , Mice, Inbred BALB C , Models, Animal , Peptides/immunology , RAW 264.7 Cells , Thymopentin/immunology
13.
Front Cell Dev Biol ; 9: 620370, 2021.
Article in English | MEDLINE | ID: mdl-33644058

ABSTRACT

Immunity is a versatile defensive response that is involved in protecting against disease by identifying and destroying self and non-self harmful substances. As a state of temporary or permanent immune dysfunction, immunosuppression can make an organism more susceptible to infection, organ injury, and cancer due to damage to the immune system. It has taken a long time to develop new immunomodulatory agents to prevent and treat immunosuppressive diseases. In recent years, Toll-like receptor 2 (TLR2) agonists have been reported to have profound effects on the immune system, and they are regarded as potent immunomodulatory candidates. TP5 and LL-37, the potent immunomodulatory agents, have been reported to produce a robust innate immune response by binding to TLR2. However, their development has been weakened by several concerns, such as potential cytotoxicity, weak physiological stability and poor immunomodulatory activity. To overcome these challenges, hybridization has been proposed. Therefore, six hybrid peptides (LTPa, LTPb, LTPc, TPLa, TPLb, and TPLc) were designed by combining the full-length TP5 with a characteristic fragment of LL-37 that included LL-37 (13-36), LL-37 (17-29), and LL-37 (13-31). LTPa, the most potent TLR2 agonist, was simply and effectively screened by molecular docking and in vitro experiments. Furthermore, the immunomodulatory effects of LTPa were confirmed by a CTX-immunosuppressed murine model, which demonstrated that LTPa successfully inhibit immunosuppression, increased immune organ indices, enhanced DC maturation, regulated T lymphocyte subsets, and increased cytokine and Ig contents. Our study also revealed that the immunomodulatory effects of LTPa are associated with binding to TLR2, forming TLR2 clusters, and activating the NF-κB signaling pathway.

14.
Mult Scler Relat Disord ; 48: 102661, 2021 Feb.
Article in English | MEDLINE | ID: mdl-33321344

ABSTRACT

Cladribine has been shown to lower relapse rates and decrease disease progression in patients with relapsing forms of multiple sclerosis (MS). Reported adverse effects with use of cladribine include lymphopenia, neutropenia, and infections. Ocular complications have not previously been described with cladribine. We report the case of a patient developing visual symptoms and a large retinal cotton wool spot in association with initiation of cladribine therapy.


Subject(s)
Lymphopenia , Multiple Sclerosis, Relapsing-Remitting , Multiple Sclerosis , Cladribine/adverse effects , Humans , Immunosuppressive Agents , Multiple Sclerosis/complications , Multiple Sclerosis/drug therapy , Multiple Sclerosis, Relapsing-Remitting/complications , Multiple Sclerosis, Relapsing-Remitting/drug therapy
15.
Pak J Med Sci ; 36(7): 1742-1744, 2020.
Article in English | MEDLINE | ID: mdl-33235608

ABSTRACT

Pakistan's hepatitis C virus (HCV) burden is one of the highest in the world. Around eight million people live with HCV in Pakistan according to a National Hepatitis Survey. Most HCV-infected people are unaware of their infection status culminating in delayed diagnosis and treatment, progressing to end stage liver disease, cirrhosis, and hepatocellular carcinoma (HCC), thereby raising the disease load for a developing country with limited resources. Blood transfusions and injections with reused syringes lead to increased HCV rates in Pakistan. According to a survey viral infections like hepatitis C, hepatitis B and HIV were not screened in more than half of the blood transfusions done in Pakistan. Hepatitis C elimination requires financial support from the local government and private organizations, commitment from civil societies across the world and a dedicated political will. Without defining effective planning and strategy it is our fear that it could become the second Polio for Pakistan.

16.
FASEB J ; 34(12): 16049-16072, 2020 12.
Article in English | MEDLINE | ID: mdl-33058296

ABSTRACT

Intestinal inflammatory disorders, such as inflammatory bowel disease, are major contributors to mortality and morbidity in humans and animals worldwide. While some native peptides have great potential as therapeutic agents against intestinal inflammation, potential cytotoxicity, anti-inciting action, and suppression of anti-inflammatory activity may limit their development as anti-inflammatory agents. Peptide hybridization is an effective approach for the design and engineering of novel functional peptides because hybrid peptides combine the advantages and benefits of various native peptides. In the present study, a novel hybrid anti-inflammatory peptide that combines the active center of Cecropin A (C) and the core functional region of LL-37 (L) was designed [C-L peptide; C (1-8)-L (17-30)] through in silico analysis to reduce cytotoxicity and improve the anti-inflammatory activity of the parental peptides. The resulting C-L peptide exhibited lower cytotoxicity than either C or L peptides alone. C-L also exerted a protective effect against lipopolysaccharide (LPS)-induced inflammatory responses in RAW264.7 macrophages and in the intestines of a mouse model. The hybrid peptide exhibited increased anti-inflammatory activity compared to the parental peptides. C-L plays a role in protecting intestinal tissue from damage, LPS-induced weight loss, and leukocyte infiltration. In addition, C-L reduces the expression levels of tumor necrosis factor-alpha (TNF-α), interleukin-6 (IL-6), IL-1ß, and interferon-gamma (IFN-γ), as well as reduces cell apoptosis. It also reduced mucosal barrier damage caused by LPS. The anti-inflammatory effects of the hybrid peptide were mainly attributed to its LPS-neutralizing activity and antagonizing the activation of LPS-induced Toll-like receptor 4-myeloid differentiation factor 2 (TLR4/MD2). The peptide also affected the TLR4-(nuclear factor κB) signaling pathway, modulating the inflammatory response upon LPS stimulation. Collectively, these findings suggest that the newly designed peptide, C-L, could be developed into a novel anti-inflammatory agent for animals or humans.


Subject(s)
Anti-Inflammatory Agents/pharmacology , Inflammation/drug therapy , Intestinal Mucosa/drug effects , Peptides/pharmacology , Animals , Antimicrobial Cationic Peptides/pharmacology , Cell Line , Inflammation/chemically induced , Inflammation/metabolism , Interleukin-6/metabolism , Intestinal Mucosa/metabolism , Lipopolysaccharides/pharmacology , Male , Mice , Mice, Inbred C57BL , Mucous Membrane/drug effects , Mucous Membrane/metabolism , NF-kappa B/metabolism , RAW 264.7 Cells , Signal Transduction/drug effects , Toll-Like Receptor 4/metabolism , Tumor Necrosis Factor-alpha/metabolism
17.
Curr Opin Ophthalmol ; 31(5): 303-311, 2020 Sep.
Article in English | MEDLINE | ID: mdl-32740061

ABSTRACT

PURPOSE OF REVIEW: As artificial intelligence continues to develop new applications in ophthalmic image recognition, we provide here an introduction for ophthalmologists and a primer on the mechanisms of deep learning systems. RECENT FINDINGS: Deep learning has lent itself to the automated interpretation of various retinal imaging modalities, including fundus photography and optical coherence tomography. Convolutional neural networks (CNN) represent the primary class of deep neural networks applied to these image analyses. These have been configured to aid in the detection of diabetes retinopathy, AMD, retinal detachment, glaucoma, and ROP, among other ocular disorders. Predictive models for retinal disease prognosis and treatment are also being validated. SUMMARY: Deep learning systems have begun to demonstrate a reliable level of diagnostic accuracy equal or better to human graders for narrow image recognition tasks. However, challenges regarding the use of deep learning systems in ophthalmology remain. These include trust of unsupervised learning systems and the limited ability to recognize broad ranges of disorders.


Subject(s)
Deep Learning , Diagnostic Imaging/methods , Eye Diseases/diagnosis , Image Interpretation, Computer-Assisted/methods , Ophthalmologists , Humans , Neural Networks, Computer
18.
Front Immunol ; 11: 1361, 2020.
Article in English | MEDLINE | ID: mdl-32695115

ABSTRACT

Intestinal inflammation can cause impaired epithelial barrier function and disrupt immune homeostasis, which increases the risks of developing many highly fatal diseases. Enterohemorrhagic Escherichia coli (EHEC) O157:H7 causes intestinal infections worldwide and is a major pathogen that induces intestinal inflammation. Various antibacterial peptides have been described as having the potential to suppress and treat pathogen-induced intestinal inflammation. Cecropin A (1-8)-LL37 (17-30) (C-L), a novel hybrid peptide designed in our laboratory that combines the active center of C with the core functional region of L, shows superior antibacterial properties and minimized cytotoxicity compared to its parental peptides. Herein, to examine whether C-L could inhibit pathogen-induced intestinal inflammation, we investigated the anti-inflammatory effects of C-L in EHEC O157:H7-infected mice. C-L treatment improved the microbiota composition and microbial community balance in mouse intestines. The hybrid peptide exhibited improved anti-inflammatory effects than did the antibiotic, enrofloxacin. Hybrid peptide treated infected mice demonstrated reduced clinical signs of inflammation, reduced weight loss, reduced expression of pro-inflammatory cytokines [tumor necrosis factor-alpha (TNF-α), interleukin-6 (IL-6), and interferon-gamma (IFN-γ)], reduced apoptosis, and reduced markers of jejunal epithelial barrier function. The peptide also affected the MyD88-nuclear factor κB signaling pathway, thereby modulating inflammatory responses upon EHEC stimulation. Collectively, these findings suggest that the novel hybrid peptide C-L could be developed into a new anti-inflammatory agent for use in animals or humans.


Subject(s)
Antimicrobial Cationic Peptides/pharmacology , Cecropins/pharmacology , Escherichia coli Infections/pathology , Gastrointestinal Microbiome/drug effects , Intestinal Mucosa/drug effects , Animals , Escherichia coli O157 , Female , Inflammation/microbiology , Inflammation/pathology , Intestinal Diseases/microbiology , Intestinal Diseases/pathology , Mice , Mice, Inbred C57BL , Recombinant Proteins/pharmacology , Cathelicidins
19.
Article in English | MEDLINE | ID: mdl-32582649

ABSTRACT

CATH-2TP5 is a linear cationic hybrid peptide, consequent from naturally occurring antimicrobial peptide (AMPs) Cathelicidin-2 (CATH-2) and Immunomodulatory peptide Thymopentin (TP5) having dynamic and potent anti-inflammatory activities without hemolytic effect. The biocompatible mechanism of CATH-2TP5 is favored to explore new methodologies in the direction of biomedical applications. In this retrospectively study, an antiendotoxin and anti-inflammatory hybrid peptide CATH-2TP5 was emulated into pPICZα-A and successfully expressed in Pichia pastoris (P. pastoris). The recombinant CATH-2TP5 was purified through the Ni-affinity column and reversed-phase HPLC. The purified CATH-2TP5 peptide exhibited robust anti-endotoxin activity and significantly (p < 0.05) neutralized the effect of lipopolysaccharide (LPS). Furthermore, the down-regulated effect of CATH-2TP was more pronounced (p < 0.05) on LPS-induced cytotoxic effects, nitric oxide secretion and pro-inflammatory cytokines (TNF-α, IL-6, and IL-1ß) in murine RAW264.7 macrophages. As associated to control and parental peptide the number of apoptotic cells was also contracted with the treatment of CATH-2TP5. Thus, we concluded that CATH-2TP5 peptide may be used in various biomedical applications as a therapeutic drug.

20.
Animals (Basel) ; 10(5)2020 May 03.
Article in English | MEDLINE | ID: mdl-32375261

ABSTRACT

: Higher milk yield and prolificacy of the modern dairy cattle requires high metabolism activities to support them. It causes high heat production by the body, which coupled with increasing environmental temperatures results in heat stress (HS). Production, health, and welfare of modern cattle are severely jeopardized due to their low adaptability to hot conditions. Animal activates a variety of physiological, endocrine, and behavioral mechanisms to cope with HS. Traditionally, decreased feed intake is considered as the major factor towards negative energy balance (NEBAL) leading to a decline in milk production. However, reciprocal changes related to insulin; glucose metabolism; failure of adipose mobilization; and skeletal muscle metabolism have appeared to be the major culprits behind HS specific NEBAL. There exists high insulin activity and glucose become preferential energy fuel. Physiological biochemistry of the heat stressed cows is characterized by low-fat reserves derived NEFA (non-esterified fatty acids) response, despite high energy demands. Besides these, physiological and gut-associated changes and poor feeding practices can further compromise the welfare and production of the heat-stressed cows. Better understanding of HS specific nutritional physiology and metabolic biochemistry of the dairy cattle will primarily help to devise practical interventions in this context. Proper assessment of the HS in cattle and thereby applying relevant cooling measures at dairy seems to be the basic mitigation approach. Score of the nutritional strategies be applied in the eve of HS should target supporting physiological responses of abatement and fulfilling the deficiencies possessed, such as water and minerals. Second line of abatement constitutes proper feeding, which could augment metabolic activities and synergizes energy support. The third line of supplemental supports should be directed towards modulating the metabolic (propionates, thiazolidinediones, dietary buffers, probiotics, and fermentates) and antioxidant responses (vitamins). Comprehensive understanding of the energetic metabolism dynamics under the impact of incremental heat load and complete outlook of pros and cons of the dietary ameliorating substances together with the discovery of the newer relevant supplementations constitutes the future avenues in this context.

SELECTION OF CITATIONS
SEARCH DETAIL
...