Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
Philos Trans R Soc Lond B Biol Sci ; 378(1879): 20220312, 2023 06 19.
Article in English | MEDLINE | ID: mdl-37122218

ABSTRACT

Atrial fibrillation (AF) is the most common chronic arrhythmia presenting a heavy disease burden. We report a new approach for generating cardiomyocytes (CMs) resembling atrial cells from human-induced pluripotent stem cells (hiPSCs) using a combination of Gremlin 2 and retinoic acid treatment. More than 40% of myocytes showed rod-shaped morphology, expression of CM proteins (including ryanodine receptor 2, α-actinin-2 and F-actin) and striated appearance, all of which were broadly similar to the characteristics of adult atrial myocytes (AMs). Isolated myocytes were electrically quiescent until stimulated to fire action potentials with an AM profile and an amplitude of approximately 100 mV, arising from a resting potential of approximately -70 mV. Single-cell RNA sequence analysis showed a high level of expression of several atrial-specific transcripts including NPPA, MYL7, HOXA3, SLN, KCNJ4, KCNJ5 and KCNA5. Amplitudes of calcium transients recorded from spontaneously beating cultures were increased by the stimulation of α-adrenoceptors (activated by phenylephrine and blocked by prazosin) or ß-adrenoceptors (activated by isoproterenol and blocked by CGP20712A). Our new approach provides human AMs with mature characteristics from hiPSCs which will facilitate drug discovery by enabling the study of human atrial cell signalling pathways and AF. This article is part of the theme issue 'The heartbeat: its molecular basis and physiological mechanisms'.


Subject(s)
Atrial Fibrillation , Induced Pluripotent Stem Cells , Adult , Humans , Myocytes, Cardiac/metabolism , Cell Differentiation/physiology , Atrial Fibrillation/metabolism , Receptors, Adrenergic/metabolism , G Protein-Coupled Inwardly-Rectifying Potassium Channels/metabolism
2.
Hum Mol Genet ; 24(5): 1420-31, 2015 Mar 01.
Article in English | MEDLINE | ID: mdl-25398950

ABSTRACT

Giant axonal neuropathy (GAN) is a progressive neurodegenerative disease caused by autosomal recessive mutations in the GAN gene resulting in a loss of a ubiquitously expressed protein, gigaxonin. Gene replacement therapy is a promising strategy for treatment of the disease; however, the effectiveness and safety of gigaxonin reintroduction have not been tested in human GAN nerve cells. Here we report the derivation of induced pluripotent stem cells (iPSCs) from three GAN patients with different GAN mutations. Motor neurons differentiated from GAN iPSCs exhibit accumulation of neurofilament (NF-L) and peripherin (PRPH) protein and formation of PRPH aggregates, the key pathological phenotypes observed in patients. Introduction of gigaxonin either using a lentiviral vector or as a stable transgene resulted in normalization of NEFL and PRPH levels in GAN neurons and disappearance of PRPH aggregates. Importantly, overexpression of gigaxonin had no adverse effect on survival of GAN neurons, supporting the feasibility of gene replacement therapy. Our findings demonstrate that GAN iPSCs provide a novel model for studying human GAN neuropathologies and for the development and testing of new therapies in relevant cell types.


Subject(s)
Cytoskeletal Proteins/metabolism , Giant Axonal Neuropathy/genetics , Induced Pluripotent Stem Cells/cytology , Intermediate Filament Proteins/genetics , Motor Neurons/metabolism , Axons , Cell Differentiation , Cells, Cultured , Cytoskeletal Proteins/genetics , Fibroblasts/cytology , Fibroblasts/metabolism , Genetic Therapy/methods , Genetic Vectors/genetics , Giant Axonal Neuropathy/therapy , Humans , Intermediate Filaments/genetics , Intermediate Filaments/metabolism , Karyotyping , Lentivirus/genetics , Motor Neurons/cytology , Mutation , Phenotype
3.
Glob Cardiol Sci Pract ; 2014(3): 309-29, 2014.
Article in English | MEDLINE | ID: mdl-25763379

ABSTRACT

Treatment of cardiovascular diseases remains challenging considering the limited regeneration capacity of the heart muscle. Developments of reprogramming strategies to create in vitro and in vivo cardiomyocytes have been the focus point of a considerable amount of research in the past decades. The choice of cells to employ, the state-of-the-art methods for different reprogramming strategies, and their promises and future challenges before clinical entry, are all discussed here.

4.
Stem Cell Res ; 11(3): 1074-90, 2013 Nov.
Article in English | MEDLINE | ID: mdl-23978474

ABSTRACT

Umbilical cord blood (UCB) is an attractive source of hematopoietic stem cells (HSCs). However, the number of HSCs in UCB is limited, and attempts to amplify them in vitro remain inefficient. Several publications have documented amplification of hematopoietic stem/progenitor cells (HSPCs) on endothelial or mesenchymal cells, but the lack of homogeneity in culture conditions and HSC definition impairs direct comparison of these results. We investigated the ability of different feeder layers, mesenchymal progenitors (MPs) and endothelial cells (ECs), to amplify hematopoietic stem/progenitor cells. Placental derived HSPCs (defined as Lin(-)CD45(-/dim)CD34(+)CD38(-)CD90(+)) were maintained on confluent feeder layers and the number of cells and their marker expression were monitored over 21 days. Although both types of feeder layers supported hematopoietic expansion, only endothelial cells triggered amplification of Lin(-)CD45(-/dim)CD34(+)CD38(-)CD90(+) cells, which peaked at 14 days. The amplified cells differentiated into all cell lineages, as attested by in vitro colony-forming assays, and were capable of engraftment and multi-lineage differentiation in sub-lethally irradiated mice. Mesenchymal progenitors promoted amplification of CD38(+) cells, previously defined as precursors with more limited differentiation potential. A competitive assay demonstrated that hematopoietic stem/progenitor cells had a preference for interacting with endothelial cells in vitro. Cytokine and transcriptomic analysis of both feeder cell types identified differences in gene expression that correlated with propensity of ECs and MPs to support hematopoietic cell amplification and differentiation respectively. Finally, we used RNA sequencing of endothelial cells and HSPCs to uncover relevant networks illustrating the complex interaction between endothelial cells and HSPCs leading to stem/progenitor cell expansion.


Subject(s)
Endothelial Cells/cytology , Hematopoietic Stem Cells/cytology , Placenta/cytology , Transcriptome , Animals , Antigens, CD34/metabolism , Cell Communication , Cell Differentiation , Cell Lineage , Cells, Cultured , Female , Fetal Blood/cytology , Hematopoietic Stem Cell Transplantation , Hematopoietic Stem Cells/metabolism , Humans , Leukocyte Common Antigens/metabolism , Mice , Pregnancy , Signal Transduction , Stem Cell Niche
5.
J Proteome Res ; 12(7): 3233-45, 2013 Jul 05.
Article in English | MEDLINE | ID: mdl-23734825

ABSTRACT

Metabolic labeling with stable isotopes is a prominent technique for comparative quantitative proteomics, and stable isotope labeling with amino acids in cell culture (SILAC) is the most commonly used approach. SILAC is, however, traditionally limited to simple tissue culture regimens and only rarely employed in the context of complex culturing conditions as those required for human embryonic stem cells (hESCs). Classic hESC culture is based on the use of mouse embryonic fibroblasts (MEFs) as a feeder layer, and as a result, possible xenogeneic contamination, contribution of unlabeled amino acids by the feeders, interlaboratory variability of MEF preparation, and the overall complexity of the culture system are all of concern in conjunction with SILAC. We demonstrate a feeder-free SILAC culture system based on a customized version of a commonly used, chemically defined hESC medium developed by Ludwig et al. and commercially available as mTeSR1 [mTeSR1 is a trade mark of WiCell (Madison, WI) licensed to STEMCELL Technologies (Vancouver, Canada)]. This medium, together with adjustments to the culturing protocol, facilitates reproducible labeling that is easily scalable to the protein amounts required by proteomic work flows. It greatly enhances the usability of quantitative proteomics as a tool for the study of mechanisms underlying hESCs differentiation and self-renewal. Associated data have been deposited to the ProteomeXchange with the identifier PXD000151.


Subject(s)
Cell Culture Techniques/methods , Embryonic Stem Cells/metabolism , Isotope Labeling , Proteomics/methods , Amino Acids/chemistry , Animals , Cell Differentiation , Culture Media/chemistry , Embryonic Stem Cells/cytology , Humans , Mice
6.
PLoS One ; 8(3): e59867, 2013.
Article in English | MEDLINE | ID: mdl-23555815

ABSTRACT

Current methods to derive induced pluripotent stem cell (iPSC) lines from human dermal fibroblasts by viral infection rely on expensive and lengthy protocols. One major factor contributing to the time required to derive lines is the ability of researchers to identify fully reprogrammed unique candidate clones from a mixed cell population containing transformed or partially reprogrammed cells and fibroblasts at an early time point post infection. Failure to select high quality colonies early in the derivation process results in cell lines that require increased maintenance and unreliable experimental outcomes. Here, we describe an improved method for the derivation of iPSC lines using fluorescence activated cell sorting (FACS) to isolate single cells expressing the cell surface marker signature CD13(NEG)SSEA4(POS)Tra-1-60(POS) on day 7-10 after infection. This technique prospectively isolates fully reprogrammed iPSCs, and depletes both parental and "contaminating" partially reprogrammed fibroblasts, thereby substantially reducing the time and reagents required to generate iPSC lines without the use of defined small molecule cocktails. FACS derived iPSC lines express common markers of pluripotency, and possess spontaneous differentiation potential in vitro and in vivo. To demonstrate the suitability of FACS for high-throughput iPSC generation, we derived 228 individual iPSC lines using either integrating (retroviral) or non- integrating (Sendai virus) reprogramming vectors and performed extensive characterization on a subset of those lines. The iPSC lines used in this study were derived from 76 unique samples from a variety of tissue sources, including fresh or frozen fibroblasts generated from biopsies harvested from healthy or disease patients.


Subject(s)
Cellular Reprogramming , Fibroblasts/cytology , Flow Cytometry , Induced Pluripotent Stem Cells/cytology , Skin/cytology , Adult , Animals , Biopsy , Cell Differentiation , Cell Separation , Cells, Cultured , Female , Humans , Karyotyping , Male , Mice , Middle Aged , Skin/pathology , Teratoma/pathology , Time Factors
7.
PLoS One ; 8(2): e56289, 2013.
Article in English | MEDLINE | ID: mdl-23437109

ABSTRACT

An essential aspect of stem cell culture is the successful maintenance of the undifferentiated state. Many types of stem cells are FGF2 dependent, and pluripotent stem cells are maintained by replacing FGF2-containing media daily, while tissue-specific stem cells are typically fed every 3rd day. Frequent feeding, however, results in significant variation in growth factor levels due to FGF2 instability, which limits effective maintenance due to spontaneous differentiation. We report that stabilization of FGF2 levels using controlled release PLGA microspheres improves expression of stem cell markers, increases stem cell numbers and decreases spontaneous differentiation. The controlled release FGF2 additive reduces the frequency of media changes needed to maintain stem cell cultures, so that human embryonic stem cells and induced pluripotent stem cells can be maintained successfully with biweekly feedings.


Subject(s)
Cell Culture Techniques/methods , Cell Differentiation/drug effects , Fibroblast Growth Factor 2/pharmacology , Stem Cells/cytology , Animals , Cells, Cultured , Cells, Immobilized/cytology , Cells, Immobilized/drug effects , Culture Media/pharmacology , Embryonic Stem Cells/cytology , Embryonic Stem Cells/drug effects , Embryonic Stem Cells/enzymology , Enzyme Activation/drug effects , Humans , Induced Pluripotent Stem Cells/cytology , Induced Pluripotent Stem Cells/drug effects , Induced Pluripotent Stem Cells/enzymology , Lactic Acid , MAP Kinase Signaling System/drug effects , Mice , Microspheres , Mitogen-Activated Protein Kinases/metabolism , Neural Stem Cells/cytology , Neural Stem Cells/drug effects , Neural Stem Cells/enzymology , Polyglycolic Acid , Polylactic Acid-Polyglycolic Acid Copolymer , Stem Cells/drug effects , Stem Cells/enzymology
8.
Ann N Y Acad Sci ; 1226: 1-13, 2011 May.
Article in English | MEDLINE | ID: mdl-21615750

ABSTRACT

The New York Stem Cell Foundation's "Fifth Annual Translational Stem Cell Research Conference" convened on October 12-13, 2010 at the Rockefeller University in New York City. The conference attracted over 400 scientists, patient advocates, and stem cell research supporters from 16 countries. In addition to poster and platform presentations, the conference featured panels entitled "Road to the Clinic" and "Regulatory Roadblocks."


Subject(s)
Congresses as Topic , Foundations , Stem Cell Research , Translational Research, Biomedical , Humans , New York City , Stem Cell Research/economics , Stem Cell Research/ethics , Stem Cell Research/legislation & jurisprudence , Stem Cells
SELECTION OF CITATIONS
SEARCH DETAIL
...