Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Data Brief ; 50: 109491, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37636132

ABSTRACT

The term quality of life (QoL) refers to a wide range of multifaceted concepts that often involve subjective assessments of both positive and negative aspects of life. It is difficult to quantify QoL as the word has varied meanings in different academic areas and may have different connotations in different circumstances. The five sectors most commonly associated with QoL, however, are Health, Education, Environmental Quality, Personal Security, Civic Engagement, and Work-Life Balance. An emerging issue that falls under environmental quality is visual pollution (VP) which, as detailed in this study, refers to disruptive presences that limit visual ability in public roads with an emphasis on excavation barriers, potholes, and dilapidated sidewalks. Quantifying VP has always been difficult due to its subjective nature and lack of a consistent set of rules for systematic assessment of visual pollution. This emphasizes the need for research and module development that will allow government agencies to automatically predict and detect VP. Our dataset was collected from different regions in the Kingdom of Saudi Arabia (KSA) via the Ministry of Municipal and Rural Affairs and Housing (MOMRAH) as a part of a VP campaign to improve Saudi Arabia's urban landscape. It consists of 34,460 RGB images separated into three distinct classes: excavation barriers, potholes, and dilapidated sidewalks. To annotate all images for detection (i.e., bounding box) and classification (i.e., classification label) tasks, the deep active learning strategy (DAL) is used where an initial 1,200 VP images (i.e., 400 images per class) are manually annotated by four experts. Images with more than one object increase the number of training object ROIs which are recorded to be 8,417 for excavation barriers, 25,975 for potholes, and 7,412 for dilapidated sidewalks. The MOMRAH dataset is publicly published to enrich the research domain with the new VP image dataset.

2.
PeerJ Comput Sci ; 8: e1163, 2022.
Article in English | MEDLINE | ID: mdl-36532807

ABSTRACT

With advances in artificial intelligence and semantic technology, search engines are integrating semantics to address complex search queries to improve the results. This requires identification of well-known concepts or entities and their relationship from web page contents. But the increase in complex unstructured data on web pages has made the task of concept identification overly complex. Existing research focuses on entity recognition from the perspective of linguistic structures such as complete sentences and paragraphs, whereas a huge part of the data on web pages exists as unstructured text fragments enclosed in HTML tags. Ontologies provide schemas to structure the data on the web. However, including them in the web pages requires additional resources and expertise from organizations or webmasters and thus becoming a major hindrance in their large-scale adoption. We propose an approach for autonomous identification of entities from short text present in web pages to populate semantic models based on a specific ontology model. The proposed approach has been applied to a public dataset containing academic web pages. We employ a long short-term memory (LSTM) deep learning network and the random forest machine learning algorithm to predict entities. The proposed methodology gives an overall accuracy of 0.94 on the test dataset, indicating a potential for automated prediction even in the case of a limited number of training samples for various entities, thus, significantly reducing the required manual workload in practical applications.

3.
Healthcare (Basel) ; 8(4)2020 Nov 07.
Article in English | MEDLINE | ID: mdl-33171711

ABSTRACT

The multidisciplinary nature of the work required for research in the COVID-19 pandemic has created new challenges for health professionals in the battle against the virus. They need to be equipped with novel tools, applications, and resources-that have emerged during the pandemic-to gain access to breakthrough findings; know the latest developments; and to address their specific needs for rapid data acquisition, analysis, evaluation, and reporting. Because of the complex nature of the virus, healthcare systems worldwide are severely impacted as the treatment and the vaccine for COVID-19 disease are not yet discovered. This leads to frequent changes in regulations and policies by governments and international organizations. Our analysis suggests that given the abundance of information sources, finding the most suitable application for analysis, evaluation, or reporting, is one of such challenges. However, health professionals and policy-makers need access to the most relevant, reliable, trusted, and latest information and applications that can be used in their day-to-day tasks of COVID-19 research and analysis. In this article, we present our analysis of various novel and important web-based applications that have been specifically developed during the COVID-19 pandemic and that can be used by the health professionals community to help in advancing their analysis and research. These applications comprise search portals and their associated information repositories for literature and clinical trials, data sources, tracking dashboards, and forecasting models. We present a list of the minimally essential online, web-based applications to serve a multitude of purposes, from hundreds of those developed since the beginning of the pandemic. A critical analysis is provided for the selected applications based on 17 features that can be useful for researchers and analysts for their evaluations. These features make up our evaluation framework and have not been used previously for analysis and evaluation. Therefore, knowledge of these applications will not only increase productivity but will also allow us to explore new dimensions for using existing applications with more control, better management, and greater outcome of their research. In addition, the features used in our framework can be applied for future evaluations of similar applications and health professionals can adapt them for evaluation of other applications not covered in this analysis.

4.
Inform Health Soc Care ; 45(3): 229-241, 2020 Sep.
Article in English | MEDLINE | ID: mdl-30917718

ABSTRACT

Disparate types of data including biological and environmental have been used in supervised learning to predict a specific disease outcome. However, social determinants of health, which have been explored very little, promise to be significant predictors of public health problems such as malaria and anemia among children. We considered studying their contribution power in malaria and anemia predictions based on Variable Importance in Projection (VIP). This innovative method has potential advantages as it analyzes the impact of independent variables on disease prediction. In addition, we applied five machine learning algorithms to classify both diseases, using social determinants of health data, and compared their results. Of them all, artificial neural networks gave the best results of 94.74% and 84.17% accuracy for malaria and anemia prediction, respectively. These results are consistent and reflect the significance of non-medical factors in disease prediction.


Subject(s)
Anemia , Malaria , Social Determinants of Health , Algorithms , Anemia/etiology , Humans , Machine Learning , Malaria/etiology , Neural Networks, Computer , Risk Factors , Social Factors
5.
Biomed Res Int ; 2019: 7074387, 2019.
Article in English | MEDLINE | ID: mdl-31111064

ABSTRACT

Storing and processing of large DNA sequences has always been a major problem due to increasing volume of DNA sequence data. However, a number of solutions have been proposed but they require significant computation and memory. Therefore, an efficient storage and pattern matching solution is required for DNA sequencing data. Bloom filters (BFs) represent an efficient data structure, which is mostly used in the domain of bioinformatics for classification of DNA sequences. In this paper, we explore more dimensions where BFs can be used other than classification. A proposed solution is based on Multiple Bloom Filters (MBFs) that finds all the locations and number of repetitions of the specified pattern inside a DNA sequence. Both of these factors are extremely important in determining the type and intensity of any disease. This paper serves as a first effort towards optimizing the search for location and frequency of substrings in DNA sequences using MBFs. We expect that further optimizations in the proposed solution can bring remarkable results as this paper presents a proof of concept implementation for a given set of data using proposed MBFs technique. Performance evaluation shows improved accuracy and time efficiency of the proposed approach.


Subject(s)
Computational Biology/methods , Sequence Analysis, DNA/methods , Algorithms , Data Accuracy , Humans , Probability , Time Factors
6.
J Healthc Eng ; 2017: 9519321, 2017.
Article in English | MEDLINE | ID: mdl-29065669

ABSTRACT

In several developing countries, maternal and child health indicators trail behind the international targets set by the UN as Millennium or Sustainable Development Goals. One of the reasons is poor and nonstandardized maternal health record keeping that affects data quality. Effective decision making to improve public healthcare depends essentially on the availability of reliable data. Therefore, the aim of this research is the design and development of the standard compliant data access model for maintaining maternal and child health data to enable the effective exchange of healthcare data. The proposed model is very granular and comprehensive in contrast with existing systems. To evaluate the effectiveness of the model, a web application was implemented and was reviewed by healthcare providers and expectant mothers. User feedback highlights the usefulness of the proposed approach as compared to traditional record-keeping techniques. It is anticipated that the proposed model will lay a foundation for a comprehensive maternal and child healthcare information system. This shall enable trend analysis for policy making to help accelerate the efforts for meeting global maternal and child health targets.


Subject(s)
Child Health , Data Accuracy , Health Information Systems , Maternal Health , Child , Developing Countries , Humans
SELECTION OF CITATIONS
SEARCH DETAIL
...