Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
2.
Infect Drug Resist ; 15: 5795-5811, 2022.
Article in English | MEDLINE | ID: mdl-36213765

ABSTRACT

Background: The World Health Organization (WHO) has declared the multi-drug resistant (MDR) Klebsiella pneumoniae as one of the critical bacterial pathogens. The dearth of new antibiotics and inadequate therapeutic options necessitate finding alternative options. Bacteriophages are known as enemies of bacteria and are well-recognized to fight MDR pathogens. Methods: A total of 150 samples were collected from different clinical specimens through a convenient sampling technique. Isolation, identification, and antibiotic susceptibility testing (AST) of K. pneumoniae were done by standard and validated microbiological procedures. Molecular identification of virulence factors and antibiotic resistance genes (ARGs) was carried out through polymerase chain reaction (PCR) by using specific primers. For bacteriophage isolation, hospital sewage samples were processed for phage enrichment, purification, and further characterization ie, transmission electron microscopy (TEM) and stability testing, etc. followed by evaluation of the lytic potential of the phage. Results: Overall, a total of 41% of isolates of K. pneumoniae were observed as hypervirulent K. pneumoniae (hvKp). Among hvKp, a total of 12 (42%) were detected as MDR hvKp. A total of 37% of all MDR isolates were found resistant to colistin, and 66% of the colistin resistance isolates were recorded as mcr-1 positive. Isolated phage KpnM had shown lytic activity against 53 (79%) K. pneumoniae isolates. Remarkably, all 8 mcr-1 harboring MDR hvKp and non-hvKp isolates were susceptible to KpnM phage. Conclusion: Significant distribution of mcr-1 harboring hypervirulent Klebsiella pneumoniae was observed in clinical specimens, which is worrisome for the health system of the country. Characterized phage KpnM exhibited encouraging results and showed the lytic activity against the mcr-1 harboring hvKp isolates, which may be used as a prospective alternative control strategy to fight this ominous bacterium.

3.
Infect Dis Ther ; 10(3): 1171-1193, 2021 Sep.
Article in English | MEDLINE | ID: mdl-34170506

ABSTRACT

INTRODUCTION: The mounting incidence of multidrug-resistant bacterial strains and the dearth of novel antibiotics demand alternate therapies to manage the infections caused by resistant superbugs. Bacteriophages and phage=derived proteins are considered as potential alternates to treat such infections, and have several applications in health care systems. The aim of this review is to explore the hidden potential of bacteriophage proteins which may be a practical alternative approach to manage the threat of antibiotic resistance. RESULTS: Clinical trials are in progress for the use of phage therapy as a tool for routine medical use; however, the existing regulations may hamper their development of routine antimicrobial agents. The advancement of molecular techniques and the advent of sequencing have opened new potentials for the design of engineered bacteriophages as well as recombinant bacteriophage proteins. The phage enzymes and proteins encoded by the lysis cassette genes, especially endolysins, holins, and spanins, have shown plausible potentials as therapeutic candidates. CONCLUSION: This review offers an integrated viewpoint that aims to decipher the insights and abilities of bacteriophages and their derived proteins as potential alternatives to antibiotics.

SELECTION OF CITATIONS
SEARCH DETAIL
...