Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Type of study
Language
Publication year range
1.
Sci Rep ; 6: 29301, 2016 07 14.
Article in English | MEDLINE | ID: mdl-27411529

ABSTRACT

The voltage-gated sodium ion channel (VGSC) belongs to the largest superfamily of ion channels. Since VGSCs play key roles in physiological processes they are major targets for effective insecticides. RNA interference (RNAi) is widely used to analyse gene function, but recently, it has shown potential to contribute to novel strategies for selectively controlling agricultural insect pests. The current study evaluates the delivery of dsRNA targeted to the sodium ion channel paralytic A (TcNav) gene in Tribolium castaneum as a viable means of controlling this insect pest. Delivery of TcNav dsRNA caused severe developmental arrest with larval mortalities up to 73% post injection of dsRNA. Injected larvae showed significant (p < 0.05) knockdown in gene expression between 30-60%. Expression was also significantly (p < 0.05) reduced in pupae following injection causing 30% and 42% knockdown for early and late pupal stages, respectively. Oral delivery of dsRNA caused dose-dependant mortalities of between 19 and 51.34%; this was accompanied by significant (p < 0.05) knockdown in gene expression following 3 days of continuous feeding. The majority of larvae injected with, or fed, dsRNA died during the final larval stage prior to pupation. This work provides evidence of a viable RNAi-based strategy for insect control.


Subject(s)
Gene Knockdown Techniques , Insect Proteins/genetics , RNA Interference , Tribolium/metabolism , Voltage-Gated Sodium Channels/genetics , Animals , Biological Assay , Computational Biology , Gene Expression Regulation, Developmental , Insect Proteins/metabolism , Larva/metabolism , RNA, Double-Stranded/metabolism , RNA, Messenger/genetics , RNA, Messenger/metabolism , Survival Analysis , Time Factors , Tribolium/genetics , Tribolium/growth & development , Voltage-Gated Sodium Channels/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...