Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 158
Filter
1.
J Invest Dermatol ; 2024 Jun 04.
Article in English | MEDLINE | ID: mdl-38844128

ABSTRACT

Granuloma annulare (GA) is an idiopathic condition characterized by granulomatous inflammation in the skin. Prior studies have suggested that GA develops from various triggers, leading to a complex interplay involving innate and adaptive immunity, tissue remodeling, and fibrosis. Macrophages are the major immune cells comprising GA granulomas; however, the molecular drivers and inflammatory signaling cascade behind macrophage activation are poorly understood. Histologically, GA exhibits both palisaded and interstitial patterns on histology; however, the molecular composition of GA at the spatial level remains unexplored. GA is a condition without Food and Drug Administration-approved therapies despite the significant impact of GA on QOL. Spatial transcriptomics is a valuable tool for profiling localized, genome-wide gene expression changes across tissues, with emerging applications in clinical medicine. To improve our understanding of the spatially localized gene expression patterns underlying GA, we profiled the spatial gene expression landscape from 6 patients with GA. Our findings revealed mixed T helper 1 and T helper 2 signals comprising the GA microenvironment and spatially distinct M1 and M2 macrophage polarization characteristics. IFN-γ and TNF signals emerged as important regulators of GA granulomatous inflammation, and IL-32 emerged as a key driver of granulomatous inflammation. Overall, our spatial transcriptomics data indicate that GA exhibits mixed immune and macrophage polarization.

2.
Photochem Photobiol ; 2024 Apr 16.
Article in English | MEDLINE | ID: mdl-38623955

ABSTRACT

Metastatic melanoma is an aggressive skin cancer with high mortality and recurrence rates. Despite the clinical success of recent immunotherapy approaches, prevailing resistance rates necessitate the continued development of novel therapeutic options. Photoimmunotherapy (PIT) is emerging as a promising immunotherapy strategy that uses photodynamic therapy (PDT) to unleash systemic immune responses against tumor sites while maintaining the superior tumor-specificity and minimally invasive nature of traditional PDT. In this review, we discuss recent advances in PIT and strategies for the management of melanoma using PIT. PIT can strongly induce immunogenic cell death, inviting the concomitant application of immune checkpoint blockade or adoptive cell therapies. PIT can also be leveraged to selectively remove the suppressive immune populations associated with immunotherapy resistance. The modular nature of PIT therapy design combined with the potential for patient-specific antigen selection or drug co-delivery makes PIT an alluring option for future personalized melanoma care.

3.
Expert Opin Ther Targets ; 28(5): 419-435, 2024 May.
Article in English | MEDLINE | ID: mdl-38686865

ABSTRACT

INTRODUCTION: Collagen triple helix repeat containing 1 (CTHRC1) is a protein that has been implicated in pro-migratory pathways, arterial tissue-repair processes, and inhibition of collagen deposition via the regulation of multiple signaling cascades. Studies have also demonstrated an upregulation of CTHRC1 in multiple cancers where it has been linked to enhanced proliferation, invasion, and metastasis. However, the understanding of the exact role and mechanisms of CTHRC1 in cancer is far from complete. AREAS COVERED: This review focuses on analyzing the role of CTHRC1 in cancer as well as its associations with clinicopathologies and cancer-related processes and signaling. We have also summarized the available literature information regarding the role of CTHRC1 in tumor microenvironment and immune signaling. Finally, we have discussed the mechanisms associated with CTHRC1 regulations, and opportunities and challenges regarding the development of CTHRC1 as a potential target for cancer management. EXPERT OPINION: CTHRC1 is a multifaceted protein with critical roles in cancer progression and other pathological conditions. Its association with lower overall survival in various cancers, and impact on the tumor immune microenvironment make it an intriguing target for further research and potential therapeutic interventions in cancer.


Subject(s)
Disease Progression , Extracellular Matrix Proteins , Molecular Targeted Therapy , Neoplasms , Signal Transduction , Tumor Microenvironment , Humans , Neoplasms/pathology , Extracellular Matrix Proteins/metabolism , Animals , Up-Regulation , Cell Proliferation
4.
Front Immunol ; 15: 1336023, 2024.
Article in English | MEDLINE | ID: mdl-38426087

ABSTRACT

Melanoma is one of the most lethal neoplasms of the skin. Despite the revolutionary introduction of immune checkpoint inhibitors, metastatic spread, and recurrence remain critical problems in resistant cases. Melanoma employs a multitude of mechanisms to subvert the immune system and successfully metastasize to distant organs. Concerningly, recent research also shows that tumor cells can disseminate early during melanoma progression and enter dormant states, eventually leading to metastases at a future time. Immune escape and metastasis have previously been viewed as separate phenomena; however, accumulating evidence is breaking down this dichotomy. Recent research into the progressive mechanisms of melanoma provides evidence that dedifferentiation similar to classical epithelial to mesenchymal transition (EMT), genes involved in neural crest stem cell maintenance, and hypoxia/acidosis, are important factors simultaneously involved in immune escape and metastasis. The likeness between EMT and early dissemination, and differences, also become apparent in these contexts. Detailed knowledge of the mechanisms behind "dual drivers" simultaneously promoting metastatically inclined and immunosuppressive environments can yield novel strategies effective in disabling multiple facets of melanoma progression. Furthermore, understanding progression through these drivers may provide insight towards novel treatments capable of preventing recurrence arising from dormant dissemination or improving immunotherapy outcomes.


Subject(s)
Melanoma , Humans , Melanoma/pathology , Epithelial-Mesenchymal Transition , Immunotherapy
5.
NPJ Precis Oncol ; 8(1): 6, 2024 Jan 06.
Article in English | MEDLINE | ID: mdl-38184733

ABSTRACT

Polo-like kinase 1 (PLK1), a serine/threonine kinase, is overexpressed in melanoma and its expression has been associated with poor disease prognosis. PLK1 has been shown to interact with NUMB, a NOTCH antagonist. However, the exact role of PLK1, NUMB, and NOTCH signaling in epithelial-mesenchymal transition (EMT) in melanoma progression is unclear. In this study, Affymetrix microarray analysis was performed to determine differentially expressed genes following shRNA-mediated knockdown of PLK1 in human melanoma cells that showed significant modulations in EMT and metastasis-related genes. Using multiple PLK1-modulated melanoma cell lines, we found that PLK1 is involved in the regulation of cell migration, invasion, and EMT via its kinase activity and NOTCH activation. In vitro kinase assay and mass spectrometry analysis demonstrated a previously unknown PLK1 phosphorylation site (Ser413) on NUMB. Overexpression of non-phosphorylatable (S413A) and phosphomimetic (S413D) mutants of NUMB in melanoma cells implicated the involvement of NUMB-S413 phosphorylation in cell migration and invasion, which was independent of NOTCH activation. To determine the clinical relevance of these findings, immunohistochemistry was performed using melanoma tissue microarray, which indicated a strong positive correlation between PLK1 and N-cadherin, a protein required for successful EMT. These findings were supported by TCGA analysis, where expression of high PLK1 with low NUMB or high NOTCH or N-cadherin showed a significant decrease in survival of melanoma patients. Overall, these results suggest a potential role of PLK1 in EMT, migration, and invasion of melanoma cells. Our findings support the therapeutic targeting of PLK1, NUMB, and NOTCH for melanoma management.

7.
Cancers (Basel) ; 15(22)2023 Nov 17.
Article in English | MEDLINE | ID: mdl-38001717

ABSTRACT

The polo-like kinase (PLK) family of serine/threonine kinases contains five members (PLK1-5). Most PLKs are involved in cell cycle regulation and DNA damage response. However, PLK5 is different as it lacks a functional kinase domain and is not involved in cell cycle control. PLK5 remains the least-studied family member, and its role in oncogenesis remains enigmatic. Here, we identified tissues with high PLK5 expression by leveraging the Protein Atlas and GTEx databases with relevant literature and selected ovarian, lung, testis, endometrium, cervix, and fallopian tube tissues as candidates for further investigation. Subsequently, we performed immunohistochemical staining for PLK5 on multiple tissue microarrays followed by Vectra scanning and quantitative inForm analysis. This revealed consistently downregulated PLK5 expression in these cancers compared to normal tissues. To validate and extend our findings, we performed pan-cancer analysis of PLK5 expression using public RNAseq databases (TCGA and GTEx). We found PLK5 is downregulated in 18 cancer types, including our selected candidates. Interestingly, we also observed PLK5 expression remains consistently low in later stages of cancer, suggesting PLK5 may have a greater role in tumor initiation than cancer progression. Overall, our study demonstrates PLK5 downregulation in multiple cancers, highlighting its role as a tumor suppressor.

8.
Photochem Photobiol ; 99(2): 869-871, 2023 03.
Article in English | MEDLINE | ID: mdl-36004539

ABSTRACT

This article is a highlight of the paper by Snell et al. in the current issue of Photochemistry and Photobiology (Snell et al. Photochem. Photobiol. 2022). The authors utilized an organotypic human skin model and transgenic SKH-1 mice to determine the oxidative stress response induced by topical treatment of trichloroisocyanuric acid (TCIC), a common disinfectant used in swimming pool. Additionally, they determined molecular mechanisms associated with topical TCIC pretreatment followed by ultraviolet (UV) radiation exposure. This work provides the first example that cutaneous delivery of TCIC significantly increases UV-induced skin inflammation, suggesting a previously unidentified potential of TCIC. If translatable to human skin, these findings could be important for human skin health implications.


Subject(s)
Dermatitis , Swimming Pools , Mice , Animals , Humans , Ultraviolet Rays/adverse effects , Mice, Hairless , Skin , Mice, Transgenic , Inflammation
9.
J Invest Dermatol ; 143(4): 621-629.e6, 2023 04.
Article in English | MEDLINE | ID: mdl-36368445

ABSTRACT

FZD6 is a key gene that controls tissue polarity during development. Increasing evidence suggests that it also plays active roles in various cancers. In this study, we show that FZD6 is overexpressed in multiple melanoma cell lines and human samples. Knockdown or knockout of FZD6 does not affect cell proliferation but significantly reduces the invasive ability of melanoma cells. In addition, we have found that knockout of Fzd6 dramatically reduces lung metastasis in the Pten/BRaf mouse model of melanoma. Mechanistic studies in vitro and in vivo reveal a surprising involvement of canonical Wnt signaling and epithelial‒mesenchymal pathway in the FZD6-mediated invasive phenotype. Together, our study supports a promoter role of FZD6 in melanoma progression.


Subject(s)
Melanoma , Wnt Signaling Pathway , Animals , Mice , Humans , Wnt Signaling Pathway/genetics , Epithelial-Mesenchymal Transition/genetics , Melanoma/genetics , Cell Line , Cell Proliferation/genetics , Gene Expression Regulation, Neoplastic , Cell Line, Tumor , Frizzled Receptors/genetics
12.
Int J Mol Sci ; 23(16)2022 Aug 19.
Article in English | MEDLINE | ID: mdl-36012602

ABSTRACT

Psoriasis is an immune-mediated chronic and painful disease characterized by red raised patches of inflamed skin that may have desquamation, silvery-white scales, itching and cracks. The susceptibility of developing psoriasis depends on multiple factors, with a complex interplay between genetic and environmental factors. Studies have suggested an association between autosomal dominant CARD14 (caspase recruitment domain-containing protein 14) gain-of-function mutations with the pathophysiology of psoriasis. In this study, non-synonymous single-nucleotide polymorphisms (nsSNPs) of CARD14 gene were assessed to determine their association with psoriasis in Pakistani population. A total of 123 subjects (63 patients with psoriasis and 60 normal controls) were included in this study. DNA was extracted from blood, and PCR analysis was performed followed by Sanger sequencing for 18 CARD14 specific nsSNPs (14 previously reported and the 4 most pathogenic nsSNPs identified using bioinformatics analysis). Among the 18 tested SNPs, only 2 nsSNP, rs2066965 (R547S) and rs34367357 (V585I), were found to be associated with psoriasis. Furthermore, rs2066965 heterozygous genotype was found to be more prevalent in patients with joint pain. Additionally, the 3D structure of CARD14 protein was predicted using alpha-fold2. NMSim web server was used to perform coarse grind simulations of wild-type CARD14 and two mutated structures. R547S increases protein flexibility, whereas V353I is shown to promote CARD14-induced NF-kappa B activation. This study confirms the association between two CARD14 nsSNPs, rs2066965 and rs34367357 with psoriasis in a Pakistani population, and could be helpful in identifying the role of CARD14 gene variants as potential genetic markers in patients with psoriasis.


Subject(s)
CARD Signaling Adaptor Proteins , Polymorphism, Single Nucleotide , Psoriasis , CARD Signaling Adaptor Proteins/genetics , CARD Signaling Adaptor Proteins/metabolism , Guanylate Cyclase/genetics , Guanylate Cyclase/metabolism , Humans , Membrane Proteins/genetics , Membrane Proteins/metabolism , NF-kappa B/metabolism , Nucleotides/metabolism , Psoriasis/genetics , Psoriasis/metabolism , Skin/metabolism
13.
Mol Cancer Res ; 20(10): 1548-1560, 2022 10 04.
Article in English | MEDLINE | ID: mdl-35834616

ABSTRACT

Exchange proteins directly activated by cAMP (EPAC) belong to a family of RAP guanine nucleotide exchange factors (RAPGEF). EPAC1/2 (RAPGEF3/4) activates RAP1 and the alternative cAMP signaling pathway. We previously showed that the differential growth response of primary and metastatic melanoma cells to cAMP is mediated by EPAC. However, the mechanisms responsible for this differential response to EPAC signaling are not understood. In this study, we show that pharmacologic inhibition or siRNA-mediated knockdown of EPAC selectively inhibits the growth and survival of primary melanoma cells by downregulation of cell-cycle proteins and inhibiting the cell-cycle progression independent of ERK1/2 phosphorylation. EPAC inhibition results in upregulation of AKT phosphorylation but a downregulation of mTORC1 activity and its downstream effectors. We also show that EPAC regulates both glycolysis and oxidative phosphorylation, and production of mitochondrial reactive oxygen species, preferentially in primary melanoma cells. Employing a series of genetically matched primary and lymph node metastatic (LNM) melanoma cells, and distant organ metastatic melanoma cells, we show that the LNM and metastatic melanoma cells become progressively less responsive and refractory to EPAC inhibition suggesting loss of dependency on EPAC signaling correlates with melanoma progression. Analysis of The Cancer Genome Atlas dataset showed that lower RAPGEF3, RAPGEF4 mRNA expression in primary tumor is a predictor of better disease-free survival of patients diagnosed with primary melanoma suggesting that EPAC signaling facilitates tumor progression and EPAC is a useful prognostic marker. These data highlight EPAC signaling as a potential target for prevention of melanoma progression. IMPLICATIONS: This study establishes loss of dependency on EPAC-mTORC1 signaling as hallmark of primary melanoma evolution and targeting this escape mechanism is a promising strategy for metastatic melanoma.


Subject(s)
Guanine Nucleotide Exchange Factors , Melanoma , Guanine Nucleotide Exchange Factors/genetics , Guanine Nucleotide Exchange Factors/metabolism , Humans , Mechanistic Target of Rapamycin Complex 1/genetics , Mechanistic Target of Rapamycin Complex 1/metabolism , Melanoma/pathology , Proto-Oncogene Proteins c-akt/metabolism , RNA, Messenger/genetics , RNA, Small Interfering , Reactive Oxygen Species , Signal Transduction
14.
Front Oncol ; 12: 880876, 2022.
Article in English | MEDLINE | ID: mdl-35515106

ABSTRACT

Melanoma is one of the seven most common cancers in the United States, and its incidence is still increasing. Since 2011, developments in targeted therapies and immunotherapies have been essential for significantly improving overall survival rates. Prior to the advent of targeted and immunotherapies, metastatic melanoma was considered a death sentence, with less than 5% of patients surviving more than 5 years. With the implementation of immunotherapies, approximately half of patients with metastatic melanoma now survive more than 5 years. Unfortunately, this also means that half of the patients with melanoma do not respond to current therapies and live less than 5 years after diagnosis. One major factor that contributes to lower response in this population is acquired or primary resistance to immunotherapies via tumor immune evasion. To improve the overall survival of melanoma patients new treatment strategies must be designed to minimize the risk of acquired resistance and overcome existing primary resistance. In recent years, many advances have been made in identifying and understanding the pathways that contribute to tumor immune evasion throughout the course of immunotherapy treatment. In addition, results from clinical trials focusing on treating patients with immunotherapy-resistant melanoma have reported some initial findings. In this review, we summarize important mechanisms that drive resistance to immunotherapies in patients with cutaneous melanoma. We have focused on tumor intrinsic characteristics of resistance, altered immune function, and systemic factors that contribute to immunotherapy resistance in melanoma. Exploring these pathways will hopefully yield novel strategies to prevent acquired resistance and overcome existing resistance to immunotherapy treatment in patients with cutaneous melanoma.

15.
Prostate ; 82(9): 957-969, 2022 06.
Article in English | MEDLINE | ID: mdl-35333404

ABSTRACT

BACKGROUND: Identification of novel molecular target(s) is important for designing newer mechanistically driven approaches for the treatment of prostate cancer (PCa), which is one of the main causes of morbidity and mortality in men. In this study, we determined the role of polo-like kinase 4 (PLK4), which regulates centriole duplication and centrosome amplification (CA), in PCa. MATERIALS AND METHODS: Employing human PCa tissue microarrays, we assessed the prevalence of CA, correlated with Gleason score, and estimated major causes of CA in PCa (cell doubling vs. centriole overduplication) by staining for mother/mature centrioles. We also assessed PLK4 expression and correlated it with CA in human PCa tissues and cell lines. Further, we determined the effects of PLK4 inhibition in human PCa cells. RESULTS: Compared to benign prostate, human PCa demonstrated significantly higher CA, which was also positively correlated with the Gleason score. Further, most cases of CA were found to arise by centriole overduplication rather than cell doubling events (e.g., cytokinesis failure) in PCa. In addition, PLK4 was overexpressed in human PCa cell lines and tumors. Moreover, PLK4 inhibitors CFI-400945 and centrinone-B inhibited cell growth, viability, and colony formation of both androgen-responsive and androgen-independent PCa cell lines. PLK4 inhibition also induced cell cycle arrest and senescence in human PCa cells. CONCLUSIONS: CA is prevalent in PCa and arises predominantly by centriole overduplication as opposed to cell doubling events. Loss of centrioles is cellular stress that can promote senescence and suggests that PLK4 inhibition may be a viable therapeutic strategy in PCa.


Subject(s)
Androgens , Prostatic Neoplasms , Protein Serine-Threonine Kinases , Androgens/metabolism , Cell Cycle Proteins/metabolism , Centrioles/metabolism , Centrosome/metabolism , Humans , Male , Prostatic Neoplasms/genetics , Prostatic Neoplasms/metabolism , Protein Serine-Threonine Kinases/metabolism
16.
Transl Oncol ; 16: 101332, 2022 Feb.
Article in English | MEDLINE | ID: mdl-34973570

ABSTRACT

Polo-like kinase I (PLK1), a cell cycle regulating kinase, has been shown to have oncogenic function in several cancers. Although PLK1 inhibitors, such as BI2536, BI6727 (volasertib) and NMS-1286937 (onvansertib) are generally well-tolerated with a favorable pharmacokinetic profile, clinical successes are limited due to partial responses in cancer patients, especially those in advanced stages. Recently, combination therapies targeting multiple pathways are being tested for cancer management. In this review, we first discuss structure and function of PLK1, role of PLK1 in cancers, PLK1 specific inhibitors, and advantages of using combination therapy versus monotherapy followed by a critical account on PLK1-based combination therapies in cancer treatments, especially highlighting recent advancements and challenges. PLK1 inhibitors in combination with chemotherapy drugs and targeted small molecules have shown superior effects against cancer both in vitro and in vivo. PLK1-based combination therapies have shown increased apoptosis, disrupted cell cycle, and potential to overcome resistance in cancer cells/tissues over monotherapies. Further, with successes in preclinical experiments, researchers are validating such approaches in clinical trials. Although PLK1-based combination therapies have achieved initial success in clinical studies, there are examples where they have failed to improve patient survival. Therefore, further research is needed to identify and validate novel biologically informed co-targets for PLK1-based combinatorial therapies. Employing a network-based analysis, we identified potential PLK1 co-targets that could be examined further. In addition, understanding the mechanisms of synergism between PLK1 inhibitors and other agents may lead to a better approach on which agents to pair with PLK1 inhibition for optimum cancer treatment.

17.
J Invest Dermatol ; 142(5): 1256-1259, 2022 05.
Article in English | MEDLINE | ID: mdl-34872726

ABSTRACT

The BRAF inhibitor (BRAFi) vemurafenib improves survival of patients with melanoma with BRAFV600E mutations. However, effects of sustained BRAFis on BRAFi-resistant melanomas with dual mutations in BRAF and NRAS are not well characterized. Jandova and Wondrak (2021) report that vemurafenib selectively enhances expression of genes involved in the epithelial-to-mesenchymal transition in BRAFV600E/NRASQ61K melanoma cells, paradoxically promoting tumor growth and metastasis in mice. This preclinical study provides compelling reasons to be cautious in the use of BRAFis in patients with NRAS-driven melanoma.


Subject(s)
Melanoma , Proto-Oncogene Proteins B-raf , Animals , Cell Line, Tumor , Drug Resistance, Neoplasm/genetics , Friends , Humans , Indoles/pharmacology , Indoles/therapeutic use , Melanoma/drug therapy , Melanoma/genetics , Melanoma/metabolism , Mice , Mutation , Protein Kinase Inhibitors/pharmacology , Protein Kinase Inhibitors/therapeutic use , Proto-Oncogene Proteins B-raf/genetics , Proto-Oncogene Proteins B-raf/metabolism , Sulfonamides/pharmacology , Sulfonamides/therapeutic use , Vemurafenib/pharmacology , Vemurafenib/therapeutic use
18.
J Invest Dermatol ; 142(4): 1145-1157.e7, 2022 04.
Article in English | MEDLINE | ID: mdl-34597611

ABSTRACT

Novel therapeutic strategies are required for the effective and lasting treatment of metastatic melanoma, one of the deadliest skin malignancies. In this study, we determined the antimelanoma efficacy of 4'-bromo-resveratrol (4'-BR), which is a small-molecule dual inhibitor of SIRT1 and SIRT3, in a BrafV600E/PtenNULL mouse model that recapitulates human disease, including metastases. Tumors were induced by topical application of 4-hydroxy-tamoxifen on shaved backs of mice aged 10 weeks, and the effects of 4'-BR (5‒30 mg/kg of body weight, intraperitoneally, 3 days per week for 5 weeks) were assessed on melanoma development and progression. We found that 4'-BR at a dose of 30 mg/kg significantly reduced the size and volume of primary melanoma tumors as well as lung metastasis with no adverse effects. Furthermore, mechanistic studies on tumors showed significant modulation in the markers of proliferation, survival, and melanoma progression. Because SIRT1 and SIRT3 are linked to immunomodulation, we performed differential gene expression analysis using a PanCancer Immune Profiling Panel (770 genes). Our data showed that 4'-BR significantly downregulated the genes related to metastasis promotion, chemokine/cytokine regulation, and innate/adaptive immune functions. Overall, inhibition of SIRT1 and SIRT3 by 4'-BR is a promising antimelanoma therapy with antimetastatic and immunomodulatory activities warranting further detailed studies, including clinical investigations.


Subject(s)
Melanoma , Sirtuin 3 , Animals , Cell Line, Tumor , Melanoma/drug therapy , Melanoma/genetics , Melanoma/pathology , Mice , Mice, Knockout , Proto-Oncogene Proteins B-raf/genetics , Sirtuin 1/genetics , Sirtuin 3/genetics
19.
Front Immunol ; 13: 1051472, 2022.
Article in English | MEDLINE | ID: mdl-36741360

ABSTRACT

Atopic dermatitis (AD) is a chronic inflammatory skin disease with significant health/economic burdens. Existing therapies are not fully effective, necessitating development of new approaches for AD management. Here, we report that dietary grape powder (GP) mitigates AD-like symptoms in 2,4-dinitrofluorobenzene (DNFB)-induced AD in NC/NgaTndCrlj mice. Using prevention and intervention protocols, we tested the efficacy of 3% and 5% GP-fortified diet in a 13-weeks study. We found that GP feeding markedly inhibited development and progression of AD-like skin lesions, and caused reduction in i) epidermal thickness, mast cell infiltration, ulceration, excoriation and acanthosis in dorsal skin, ii) spleen weight, extramedullary hematopoiesis and lymph nodes sizes, and iii) ear weight and IgE levels. We also found significant modulations in 15 AD-associated serum cytokines/chemokines. Next, using quantitative global proteomics, we identified 714 proteins. Of these, 68 (normal control) and 21 (5% GP-prevention) were significantly modulated (≥2-fold) vs AD control (DNFB-treated) group, with many GP-modulated proteins reverting to normal levels. Ingenuity pathway analysis of GP-modulated proteins followed by validation using ProteinSimple identified changes in acute phase response signaling (FGA, FGB, FGG, HP, HPX, LRG1). Overall, GP supplementation inhibited DNFB-induced AD in NC/NgaTndCrlj mice in both prevention and intervention trials, and should be explored further.


Subject(s)
Dermatitis, Atopic , Skin Diseases , Vitis , Mice , Animals , Dermatitis, Atopic/metabolism , Dinitrofluorobenzene , Diet
20.
Nutrients ; 13(6)2021 May 30.
Article in English | MEDLINE | ID: mdl-34070833

ABSTRACT

Studies have suggested an important role of the trace element zinc (Zn) in prostate biology and functions. Zn has been shown to exist in very high concentrations in the healthy prostate and is important for several prostatic functions. In prostate cancer (PCa), Zn levels are significantly decreased and inversely correlated with disease progression. Ideally, restoration of adequate Zn levels in premalignant/malignant prostate cells could abort prostate malignancy. However, studies have shown that Zn supplementation is not an efficient way to significantly increase Zn concentrations in PCa. Based on a limited number of investigations, the reason for the lower levels of Zn in PCa is believed to be the dysregulation of Zn transporters (especially ZIP and ZnT family of proteins), metallothioneins (for storing and releasing Zn), and their regulators (e.g., Zn finger transcription factor RREB1). Interestingly, the level of Zn in cells has been shown to be modulated by naturally occurring dietary phytochemicals. In this review, we discussed the effect of selected phytochemicals (quercetin, resveratrol, epigallocatechin-3-gallate and curcumin) on Zn functioning and proposes that Zn in combination with specific dietary phytochemicals may lead to enhanced Zn bioaccumulation in the prostate, and therefore, may inhibit PCa.


Subject(s)
Homeostasis/physiology , Phytochemicals/metabolism , Phytochemicals/therapeutic use , Prostatic Neoplasms/drug therapy , Prostatic Neoplasms/metabolism , Zinc/metabolism , Humans , Male , Prostatic Neoplasms/physiopathology
SELECTION OF CITATIONS
SEARCH DETAIL
...