Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Commun Biol ; 7(1): 551, 2024 May 08.
Article in English | MEDLINE | ID: mdl-38720110

ABSTRACT

Fusobacterium nucleatum, a gram-negative oral bacterium, has been consistently validated as a strong contributor to the progression of several types of cancer, including colorectal (CRC) and pancreatic cancer. While previous in vitro studies have shown that intracellular F. nucleatum enhances malignant phenotypes such as cell migration, the dependence of this regulation on features of the tumor microenvironment (TME) such as oxygen levels are wholly uncharacterized. Here we examine the influence of hypoxia in facilitating F. nucleatum invasion and its effects on host responses focusing on changes in the global epigenome and transcriptome. Using a multiomic approach, we analyze epigenomic alterations of H3K27ac and global transcriptomic alterations sustained within a hypoxia and normoxia conditioned CRC cell line HCT116 at 24 h following initial infection with F. nucleatum. Our findings reveal that intracellular F. nucleatum activates signaling pathways and biological processes in host cells similar to those induced upon hypoxia conditioning in the absence of infection. Furthermore, we show that a hypoxic TME favors F. nucleatum invasion and persistence and therefore infection under hypoxia may amplify malignant transformation by exacerbating the effects induced by hypoxia alone. These results motivate future studies to investigate host-microbe interactions in tumor tissue relevant conditions that more accurately define parameters for targeted cancer therapies.


Subject(s)
Colorectal Neoplasms , Epigenome , Fusobacterium Infections , Fusobacterium nucleatum , Oxygen , Transcriptome , Humans , Fusobacterium nucleatum/genetics , Fusobacterium nucleatum/physiology , Fusobacterium nucleatum/pathogenicity , Colorectal Neoplasms/genetics , Colorectal Neoplasms/microbiology , Colorectal Neoplasms/metabolism , Colorectal Neoplasms/pathology , HCT116 Cells , Fusobacterium Infections/genetics , Fusobacterium Infections/microbiology , Fusobacterium Infections/metabolism , Oxygen/metabolism , Tumor Microenvironment/genetics , Gene Expression Regulation, Neoplastic
2.
Bioelectrochemistry ; 157: 108669, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38377890

ABSTRACT

Intratumoral bacteria have been implicated in driving tumor progression, yet effective treatments to modulate the tumor microbiome remain limited. In this study, we investigate the use of electroporation in combination with metronidazole to enhance the clearance of intracellular Fusobacterium nucleatum within pancreatic cancer cells. We explore various parameters, including electric field strength, pulse width, and pulse number to assess the permeability of pancreatic cancer cells infected with F. nucleatum, compared to non-infected cells of the same type. We subsequently quantify the clearance of intracellular bacteria when these pulsing schemes are applied to a suspension of infected pancreatic cancer cells in the presence of metronidazole. Our results reveal distinct differences in cell permeability between infected and non-infected cells, identifying a unique biophysical marker for host cells infected with F. nucleatum. We demonstrate that the combinatorial use of electroporation and metronidazole significantly enhances the delivery of metronidazole into host cells, leading to more effective clearance of intracellular F. nucleatum compared to independent treatments; we term this novel approach Electro-Antibacterial Therapy (EAT). EAT holds promise as an innovative strategy for addressing intratumoral bacteria in pancreatic cancer, other malignancies, and potentially treatment-resistant infections, offering new avenues for therapeutic intervention.


Subject(s)
Metronidazole , Pancreatic Neoplasms , Humans , Metronidazole/pharmacology , Metronidazole/therapeutic use , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/therapeutic use , Fusobacterium nucleatum , Pancreatic Neoplasms/drug therapy
3.
Cancers (Basel) ; 15(16)2023 Aug 08.
Article in English | MEDLINE | ID: mdl-37627042

ABSTRACT

Cancer immunotherapies, while promising and occasionally even curative, encounter numerous hurdles within the tumor microenvironment that hinder their efficacy [...].

4.
Sci Signal ; 15(756): eabn4948, 2022 10 18.
Article in English | MEDLINE | ID: mdl-36256708

ABSTRACT

The tumor microbiome is increasingly implicated in cancer progression and resistance to chemotherapy. In pancreatic ductal adenocarcinoma (PDAC), high intratumoral loads of Fusobacterium nucleatum correlate with shorter survival in patients. Here, we investigated the potential mechanisms underlying this association. We found that F. nucleatum infection induced both normal pancreatic epithelial cells and PDAC cells to secrete increased amounts of the cytokines GM-CSF, CXCL1, IL-8, and MIP-3α. These cytokines increased proliferation, migration, and invasive cell motility in both infected and noninfected PDAC cells but not in noncancerous pancreatic epithelial cells, suggesting autocrine and paracrine signaling to PDAC cells. This phenomenon occurred in response to Fusobacterium infection regardless of the strain and in the absence of immune and other stromal cells. Blocking GM-CSF signaling markedly limited proliferative gains after infection. Thus, F. nucleatum infection in the pancreas elicits cytokine secretion from both normal and cancerous cells that promotes phenotypes in PDAC cells associated with tumor progression. The findings support the importance of exploring host-microbe interactions in pancreatic cancer to guide future therapeutic interventions.


Subject(s)
Carcinoma, Pancreatic Ductal , Pancreatic Neoplasms , Humans , Fusobacterium nucleatum , Granulocyte-Macrophage Colony-Stimulating Factor , Paracrine Communication , Interleukin-8 , Pancreatic Neoplasms/pathology , Carcinoma, Pancreatic Ductal/pathology , Cell Proliferation/physiology , Pancreas , Pancreatic Neoplasms
5.
Ann Biomed Eng ; 49(12): 3401-3411, 2021 Dec.
Article in English | MEDLINE | ID: mdl-34704163

ABSTRACT

Exogenous electrical fields have been explored in regenerative medicine to increase cellular expression of pro-regenerative growth factors. Adipose-derived stem cells (ASCs) are attractive for regenerative applications, specifically for neural repair. Little is known about the relationship between low-level electrical stimulation (ES) and ASC regenerative potentiation. In this work, patterns of ASC expression and secretion of growth factors (i.e., secretome) were explored across a range of ES parameters. ASCs were stimulated with low-level stimulation (20 mV/mm) at varied pulse frequencies, durations, and with alternating versus direct current. Frequency and duration had the most significant effects on growth factor expression. While a range of stimulation frequencies (1, 20, 1000 Hz) applied intermittently (1 h × 3 days) induced upregulation of general wound healing factors, neural-specific factors were only increased at 1 Hz. Moreover, the most optimal expression of neural growth factors was achieved when ASCs were exposed to 1 Hz pulses continuously for 24 h. In evaluation of secretome, apparent inconsistencies were observed across biological replications. Nonetheless, ASC secretome (from 1 Hz, 24 h ES) caused significant increase in neurite extension compared to non-stimulated control. Overall, ASCs are sensitive to ES parameters at low field strengths, notably pulse frequency and stimulation duration.


Subject(s)
Adipocytes/cytology , Electric Stimulation , Stem Cells/radiation effects , Adipocytes/metabolism , Cells, Cultured , Electric Stimulation/methods , Humans , Nerve Growth Factors/metabolism , Neurites/metabolism , Secretome/metabolism , Stem Cells/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...