Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Type of study
Language
Publication year range
1.
Nat Commun ; 15(1): 2045, 2024 Mar 06.
Article in English | MEDLINE | ID: mdl-38448464

ABSTRACT

Metal-organic frameworks have drawn attention as potential catalysts owing to their unique tunable surface chemistry and accessibility. However, their application in thermal catalysis has been limited because of their instability under harsh temperatures and pressures, such as the hydrogenation of CO2 to methanol. Herein, we use a controlled two-step method to synthesize finely dispersed Cu on a zeolitic imidazolate framework-8 (ZIF-8). This catalyst suffers a series of transformations during the CO2 hydrogenation to methanol, leading to ~14 nm Cu nanoparticles encapsulated on the Zn-based MOF that are highly active (2-fold higher methanol productivity than the commercial Cu-Zn-Al catalyst), very selective (>90%), and remarkably stable for over 150 h. In situ spectroscopy, density functional theory calculations, and kinetic results reveal the preferential adsorption sites, the preferential reaction pathways, and the reverse water gas shift reaction suppression over this catalyst. The developed material is robust, easy to synthesize, and active for CO2 utilization.

2.
ChemSusChem ; 16(22): e202300234, 2023 Nov 22.
Article in English | MEDLINE | ID: mdl-37114507

ABSTRACT

Typically, transition metals are considered as the centers for the activation of dinitrogen. Here we demonstrate that the nitride hydride compound Ca3 CrN3 H, with robust ammonia synthesis activity, can activate dinitrogen through active sites where calcium provides the primary coordination environment. DFT calculations also reveal that an associative mechanism is favorable, distinct from the dissociative mechanism found in traditional Ru or Fe catalysts. This work shows the potential of alkaline earth metal hydride catalysts and other related 1 D hydride/electrides for ammonia synthesis.

3.
Adv Mater ; 33(18): e2100812, 2021 May.
Article in English | MEDLINE | ID: mdl-33792108

ABSTRACT

The photoelectrochemical (PEC) approach is attractive as a promising route for the nitrogen reduction reaction (NRR) toward ammonia (NH3 ) synthesis. However, the challenges in synergistic management of optical, electrical, and catalytic properties have limited the efficiency of PEC NRR devices. Herein, to enhance light-harvesting, carrier separation/transport, and the catalytic reactions, a concept of decoupling light-harvesting and electrocatalysis by employing a cascade n+ np+ -Si photocathode is implemented. Such a decoupling design not only abolishes the parasitic light blocking but also concurrently improves the optical and electrical properties of the n+ np+ -Si photocathode without compromising the efficiency. Experimental and density functional theory studies reveal that the porous architecture and N-vacancies promote N2 adsorption of the Au/porous carbon nitride (PCN) catalyst. Impressively, an n+ np+ -Si photocathode integrating the Au/PCN catalyst exhibits an outstanding PEC NRR performance with maximum Faradaic efficiency (FE) of 61.8% and NH3 production yield of 13.8 µg h-1 cm-2 at -0.10 V versus reversible hydrogen electrode (RHE), which is the highest FE at low applied potential ever reported for the PEC NRR.

4.
J Am Chem Soc ; 142(39): 16690-16703, 2020 Sep 30.
Article in English | MEDLINE | ID: mdl-32902976

ABSTRACT

We report here the first step by step anchoring of a W(≡CtBu)(CH2tBu)3 complex on a highly crystalline and mesoporous MOF, namely Zr-NU-1000, using a Surface Organometallic Chemistry (SOMC) concept and methodology. SOMC allowed us to selectively graft the complex on the Zr6 clusters and characterize the obtained single site material using state of the art experimental methods including extensive solid-state NMR techniques and HAADF-STEM imaging. Further FT-IR spectroscopy revealed the presence of a W═O moiety arising from the in situ reaction of the W≡CtBu functionality with the coordinated water coming from the 8-connected hexanuclear Zr6 clusters. All the steps leading to the final grafted molecular complex have been identified by DFT. The obtained material was tested for gas phase and liquid phase olefin metathesis and exhibited higher catalytic activity than the corresponding catalysts synthesized by different grafting methods. This contribution establishes the importance of applying SOMC to MOF chemistry to get well-defined single site catalyst on MOF inorganic secondary building units, in particular the in situ synthesis of W═O alkyl complexes from their W carbyne analogues.

5.
Nat Mater ; 19(12): 1346-1353, 2020 Dec.
Article in English | MEDLINE | ID: mdl-32778813

ABSTRACT

The combination of well-defined molecular cavities and chemical functionality makes crystalline porous solids attractive for a great number of technological applications, from catalysis to gas separation. However, in contrast to other widely applied synthetic solids such as polymers, the lack of processability of crystalline extended solids hampers their application. In this work, we demonstrate that metal-organic frameworks, a type of highly crystalline porous solid, can be made solution processable via outer surface functionalization using N-heterocyclic carbene ligands. Selective outer surface functionalization of relatively large nanoparticles (250 nm) of the well-known zeolitic imidazolate framework ZIF-67 allows for the stabilization of processable dispersions exhibiting permanent porosity. The resulting type III porous liquids can either be directly deployed as liquid adsorbents or be co-processed with state-of-the-art polymers to yield highly loaded mixed matrix membranes with excellent mechanical properties and an outstanding performance in the challenging separation of propylene from propane. We anticipate that this approach can be extended to other metal-organic frameworks and other applications.

6.
Chem Commun (Camb) ; 51(94): 16856-9, 2015 Dec 07.
Article in English | MEDLINE | ID: mdl-26439584

ABSTRACT

We report stable ultrathin Au nanowires supported on reduced graphene oxide with outstanding electrocatalytic activity for borohydride oxidation. Electrochemical impedance spectroscopy measurements showed abnormal inductive behavior, indicative of surface reactivation. DFT calculations indicate that the origin of the high activity stems from the position of the Au d-band center.

SELECTION OF CITATIONS
SEARCH DETAIL
...