Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Rep ; 14(1): 16588, 2024 Jul 18.
Article in English | MEDLINE | ID: mdl-39025925

ABSTRACT

Invasive fungal infections (IFI) pose a significant health burden, leading to high morbidity, mortality, and treatment costs. This study aims to develop and characterize nanomicelles for the codelivery of posaconazole and hemp seed oil for IFI via the oral route. The nanomicelles were prepared using a nanoprecipitation method and optimized through the Box Behnken design. The optimized nanomicelles resulted in satisfactory results for zeta potential, size, PDI, entrapment efficiency, TEM, and stability studies. FTIR and DSC results confirm the compatibility and amorphous state of the prepared nanomicelles. Confocal laser scanning microscopy showed that the optimized nanomicelles penetrated the tissue more deeply (44.9µm) than the suspension (25µm). The drug-loaded nanomicelles exhibited sustained cumulative drug release of 95.48 ± 3.27% for 24 h. The nanomicelles showed significant inhibition against Aspergillus niger and Candida albicans (22.4 ± 0.21 and 32.2 ± 0.46 mm, respectively). The pharmacokinetic study on Wistar rats exhibited a 1.8-fold increase in relative bioavailability for the nanomicelles compared to the suspension. These results confirm their therapeutic efficacy and lay the groundwork for future research and clinical applications, providing a promising synergistic antifungal nanomicelles approach for treating IFIs.


Subject(s)
Antifungal Agents , Plant Oils , Animals , Antifungal Agents/administration & dosage , Antifungal Agents/pharmacokinetics , Antifungal Agents/pharmacology , Antifungal Agents/chemistry , Rats , Plant Oils/chemistry , Plant Oils/pharmacology , Plant Oils/administration & dosage , Triazoles/administration & dosage , Triazoles/pharmacokinetics , Triazoles/chemistry , Triazoles/pharmacology , Nanoparticles/chemistry , Rats, Wistar , Candida albicans/drug effects , Invasive Fungal Infections/drug therapy , Aspergillus niger/drug effects , Micelles , Seeds/chemistry , Drug Liberation , Male , Drug Carriers/chemistry
2.
Article in English | MEDLINE | ID: mdl-37817658

ABSTRACT

A diabetic wound is one of the major complications arising from hyperglycemia, neuropathy, and oxidative stress in diabetic patients. Finding effective treatments for diabetic wounds has been difficult owing to the complex pathophysiology of diabetic wound environments. Chronic wounds are notoriously difficult to treat with conventional wound care methods. In recent years, polyphenols found in plants have received much interest as a potential treatment for diabetic wounds. Their key benefits are their safety and the fact that they act through many molecular routes to treat diabetic wounds. However, problems with their formulation development, including lipophilicity, light sensitivity, limited membrane permeability, rapid systemic elimination, and enzymatic degradation, prevented them from gaining clinical attention. This article highlights and discusses the mechanism of polyphenols and various polyphenol-based drug delivery systems used till now to treat diabetic wounds. The consideration that should be taken in polyphenols-based nano-formulations and their prospect for diabetic wounds are also discussed briefly.


Subject(s)
Diabetes Mellitus , Hyperglycemia , Humans , Biocompatible Materials/pharmacology , Diabetes Mellitus/drug therapy , Wound Healing , Drug Delivery Systems
3.
Int J Biol Macromol ; 221: 435-445, 2022 Nov 30.
Article in English | MEDLINE | ID: mdl-36067850

ABSTRACT

This study aims to develop chitosan-coated PLGA nanoparticles intended for nose-to-brain delivery of carmustine. Formulations were prepared by the double emulsion solvent evaporation method and optimized by using Box-Behnken Design. The optimized nanoparticles were obtained to satisfactory levels in terms of particle size, PDI, entrapment efficiency, and drug loading. In vitro drug release and ex-vivo permeation showed sustained release and enhanced permeability (approx. 2 fold) of carmustine compared to drug suspension. The AUC0-t of brain obtained with carmustine-loaded nanoparticles via nasal administration in Albino Wistar rats was 2.8 and 14.7 times that of intranasal carmustine suspension and intravenous carmustine, respectively. The MTT assay on U87 MG cell line showed a significant decrease (P < 0.05) in the IC50 value of the formulation (71.23 µg ml-1) as compared to drug suspension (90.02 µg ml-1).These findings suggest chitosan coated nanoparticles could be used to deliver carmustine via intranasal administration to treat Glioblastoma multiforme.


Subject(s)
Chitosan , Glioblastoma , Nanoparticles , Animals , Rats , Administration, Intranasal , Chitosan/metabolism , Carmustine/metabolism , Glioblastoma/drug therapy , Glioblastoma/metabolism , Drug Carriers/metabolism , Brain/metabolism , Particle Size , Rats, Wistar , Drug Delivery Systems/methods
SELECTION OF CITATIONS
SEARCH DETAIL
...