Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 34
Filter
1.
JAMA Netw Open ; 7(5): e2414322, 2024 May 01.
Article in English | MEDLINE | ID: mdl-38819819

ABSTRACT

Importance: Higher adherence to the Mediterranean diet has been associated with reduced risk of all-cause mortality, but data on underlying molecular mechanisms over long follow-up are limited. Objectives: To investigate Mediterranean diet adherence and risk of all-cause mortality and to examine the relative contribution of cardiometabolic factors to this risk reduction. Design, Setting, and Participants: This cohort study included initially healthy women from the Women's Health Study, who had provided blood samples, biomarker measurements, and dietary information. Baseline data included self-reported demographics and a validated food-frequency questionnaire. The data collection period was from April 1993 to January 1996, and data analysis took place from June 2018 to November 2023. Exposures: Mediterranean diet score (range, 0-9) was computed based on 9 dietary components. Main Outcome and Measures: Thirty-three blood biomarkers, including traditional and novel lipid, lipoprotein, apolipoprotein, inflammation, insulin resistance, and metabolism measurements, were evaluated at baseline using standard assays and nuclear magnetic resonance spectroscopy. Mortality and cause of death were determined from medical and death records. Cox proportional hazards regression was used to calculate hazard ratios (HRs) for Mediterranean diet adherence and mortality risk, and mediation analyses were used to calculate the mediated effect of different biomarkers in understanding this association. Results: Among 25 315 participants, the mean (SD) baseline age was 54.6 (7.1) years, with 329 (1.3%) Asian women, 406 (1.6%) Black women, 240 (0.9%) Hispanic women, 24 036 (94.9%) White women, and 95 (0.4%) women with other race and ethnicity; the median (IQR) Mediterranean diet adherence score was 4.0 (3.0-5.0). Over a mean (SD) of 24.7 (4.8) years of follow-up, 3879 deaths occurred. Compared with low Mediterranean diet adherence (score 0-3), adjusted risk reductions were observed for middle (score 4-5) and upper (score 6-9) groups, with HRs of 0.84 (95% CI, 0.78-0.90) and 0.77 (95% CI, 0.70-0.84), respectively (P for trend < .001). Further adjusting for lifestyle factors attenuated the risk reductions, but they remained statistically significant (middle adherence group: HR, 0.92 [95% CI, 0.85-0.99]; upper adherence group: HR, 0.89 [95% CI, 0.82-0.98]; P for trend = .001). Of the biomarkers examined, small molecule metabolites and inflammatory biomarkers contributed most to the lower mortality risk (explaining 14.8% and 13.0%, respectively, of the association), followed by triglyceride-rich lipoproteins (10.2%), body mass index (10.2%), and insulin resistance (7.4%). Other pathways, including branched-chain amino acids, high-density lipoproteins, low-density lipoproteins, glycemic measures, and hypertension, had smaller contributions (<3%). Conclusions and Relevance: In this cohort study, higher adherence to the Mediterranean diet was associated with 23% lower risk of all-cause mortality. This inverse association was partially explained by multiple cardiometabolic factors.


Subject(s)
Biomarkers , Diet, Mediterranean , Humans , Diet, Mediterranean/statistics & numerical data , Female , Middle Aged , Biomarkers/blood , Cohort Studies , Patient Compliance/statistics & numerical data , Mortality , Cause of Death , Aged , Adult , Proportional Hazards Models , Risk Factors
2.
EBioMedicine ; 100: 104989, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38301483

ABSTRACT

BACKGROUND: Previous population-based studies investigating the relationship between physical activity and the gut microbiota have relied on self-reported activity, prone to reporting bias. Here, we investigated the associations of accelerometer-based sedentary (SED), moderate-intensity (MPA), and vigorous-intensity (VPA) physical activity with the gut microbiota using cross-sectional data from the Swedish CArdioPulmonary bioImage Study. METHODS: In 8416 participants aged 50-65, time in SED, MPA, and VPA were estimated with hip-worn accelerometer. Gut microbiota was profiled using shotgun metagenomics of faecal samples. We applied multivariable regression models, adjusting for sociodemographic, lifestyle, and technical covariates, and accounted for multiple testing. FINDINGS: Overall, associations between time in SED and microbiota species abundance were in opposite direction to those for MPA or VPA. For example, MPA was associated with lower, while SED with higher abundance of Escherichia coli. MPA and VPA were associated with higher abundance of the butyrate-producers Faecalibacterium prausnitzii and Roseburia spp. We observed discrepancies between specific VPA and MPA associations, such as a positive association between MPA and Prevotella copri, while no association was detected for VPA. Additionally, SED, MPA and VPA were associated with the functional potential of the microbiome. For instance, MPA was associated with higher capacity for acetate synthesis and SED with lower carbohydrate degradation capacity. INTERPRETATION: Our findings suggest that sedentary and physical activity are associated with a similar set of gut microbiota species but in opposite directions. Furthermore, the intensity of physical activity may have specific effects on certain gut microbiota species. FUNDING: European Research Council, Swedish Heart-Lung Foundation, Swedish Research Council, Knut and Alice Wallenberg Foundation.


Subject(s)
Gastrointestinal Microbiome , Humans , Cross-Sectional Studies , Exercise , Life Style , Accelerometry
3.
medRxiv ; 2023 Oct 03.
Article in English | MEDLINE | ID: mdl-37873228

ABSTRACT

Background: Higher consumption of Mediterranean diet (MED) intake has been associated with reduced risk of all-cause mortality but limited data are available examining long-term outcomes in women or the underlying molecular mechanisms of this inverse association in human populations. We aimed to investigate the association of MED intake with long-term risk of all-cause mortality in women and to better characterize the relative contribution of traditional and novel cardiometabolic factors to the MED-related risk reduction in morality. Methods: In a prospective cohort study of 25,315 initially healthy women from the Women's Health Study, we assessed dietary MED intake using a validated semiquantitative food frequency questionnaire according to the usual 9-category measure of MED adherence. Baseline levels of more than thirty cardiometabolic biomarkers were measured using standard assays and targeted nuclear magnetic resonance spectroscopy, including lipids, lipoproteins, apolipoproteins, inflammation, glucose metabolism and insulin resistance, branched-chain amino acids, small metabolites, and clinical factors. Mortality and cause of death was ascertained prospectively through medical and death records. Results: During a mean follow-up of 25 years, 3,879 deaths were ascertained. Compared to the reference group of low MED intake (0-3, approximately the bottom tertile), and adjusting for age, treatment, and energy intake, risk reductions were observed for the middle and upper MED groups with respective HRs of 0.84 (95% CI 0.78-0.90) and 0.77 (95% CI 0.70-0.84), p for trend <0.0001. Further adjusting for smoking, physical activity, alcohol intake and menopausal factors attenuated the risk reductions which remained significant with respective HRs of 0.92 (95% CI 0.85-0.99) and 0.89 (95% CI 0.82-0.98), p for trend 0.0011. Risk reductions were generally similar for CVD and non-CVD mortality. Small molecule metabolites (e.g., alanine and homocysteine) and inflammation made the largest contributions to lower mortality risk (accounting for 14.8% and 13.0% of the benefit of the MED-mortality association, respectively), followed by triglyceride-rich lipoproteins (10.2%), adiposity (10.2%) and insulin resistance (7.4%), with lesser contributions (<3%) from other pathways including branched-chain amino acids, high-density lipoproteins, low-density lipoproteins, glycemic measures, and hypertension. Conclusions: In the large-scale prospective Women's Health Study of 25,315 initially healthy US women followed for 25 years, higher MED intake was associated with approximately one fifth relative risk reduction in mortality. The inverse association was only partially explained by known novel and traditional cardiometabolic factors.

4.
Circulation ; 148(6): 459-472, 2023 08 08.
Article in English | MEDLINE | ID: mdl-37435755

ABSTRACT

BACKGROUND: Gut microbiota have been implicated in atherosclerotic disease, but their relation with subclinical coronary atherosclerosis is unclear. This study aimed to identify associations between the gut microbiome and computed tomography-based measures of coronary atherosclerosis and to explore relevant clinical correlates. METHODS: We conducted a cross-sectional study of 8973 participants (50 to 65 years of age) without overt atherosclerotic disease from the population-based SCAPIS (Swedish Cardiopulmonary Bioimage Study). Coronary atherosclerosis was measured using coronary artery calcium score and coronary computed tomography angiography. Gut microbiota species abundance and functional potential were assessed with shotgun metagenomics sequencing of fecal samples, and associations with coronary atherosclerosis were evaluated with multivariable regression models adjusted for cardiovascular risk factors. Associated species were evaluated for association with inflammatory markers, metabolites, and corresponding species in saliva. RESULTS: The mean age of the study sample was 57.4 years, and 53.7% were female. Coronary artery calcification was detected in 40.3%, and 5.4% had at least 1 stenosis with >50% occlusion. Sixty-four species were associated with coronary artery calcium score independent of cardiovascular risk factors, with the strongest associations observed for Streptococcus anginosus and Streptococcus oralis subsp oralis (P<1×10-5). Associations were largely similar across coronary computed tomography angiography-based measurements. Out of the 64 species, 19 species, including streptococci and other species commonly found in the oral cavity, were associated with high-sensitivity C-reactive protein plasma concentrations, and 16 with neutrophil counts. Gut microbial species that are commonly found in the oral cavity were negatively associated with plasma indole propionate and positively associated with plasma secondary bile acids and imidazole propionate. Five species, including 3 streptococci, correlated with the same species in saliva and were associated with worse dental health in the Malmö Offspring Dental Study. Microbial functional potential of dissimilatory nitrate reduction, anaerobic fatty acid ß-oxidation, and amino acid degradation were associated with coronary artery calcium score. CONCLUSIONS: This study provides evidence of an association of a gut microbiota composition characterized by increased abundance of Streptococcus spp and other species commonly found in the oral cavity with coronary atherosclerosis and systemic inflammation markers. Further longitudinal and experimental studies are warranted to explore the potential implications of a bacterial component in atherogenesis.


Subject(s)
Atherosclerosis , Coronary Artery Disease , Humans , Female , Middle Aged , Male , Coronary Artery Disease/diagnostic imaging , Coronary Artery Disease/epidemiology , Cross-Sectional Studies , Calcium , Atherosclerosis/epidemiology , Streptococcus
6.
Chest ; 164(2): 503-516, 2023 08.
Article in English | MEDLINE | ID: mdl-36925044

ABSTRACT

BACKGROUND: OSA is a common sleep-breathing disorder linked to increased risk of cardiovascular disease. Intermittent upper airway obstruction and hypoxia, hallmarks of OSA, have been shown in animal models to induce substantial changes to the gut microbiota composition, and subsequent transplantation of fecal matter to other animals induced changes in BP and glucose metabolism. RESEARCH QUESTION: Does OSA in adults associate with the composition and functional potential of the human gut microbiota? STUDY DESIGN AND METHODS: We used respiratory polygraphy data from up to 3,570 individuals 50 to 64 years of age from the population-based Swedish Cardiopulmonary bioimage Study combined with deep shotgun metagenomics of fecal samples to identify cross-sectional associations between three OSA parameters covering apneas and hypopneas, cumulative sleep time in hypoxia, and number of oxygen desaturation events with gut microbiota composition. Data collection about potential confounders was based on questionnaires, onsite anthropometric measurements, plasma metabolomics, and linkage with the Swedish Prescribed Drug Register. RESULTS: We found that all three OSA parameters were associated with lower diversity of species in the gut. Furthermore, in multivariable-adjusted analysis, the OSA-related hypoxia parameters were associated with the relative abundance of 128 gut bacterial species, including higher abundance of Blautia obeum and Collinsella aerofaciens. The latter species was also independently associated with increased systolic BP. Furthermore, the cumulative time in hypoxia during sleep was associated with the abundance of genes involved in nine gut microbiota metabolic pathways, including propionate production from lactate. Finally, we observed two heterogeneous sets of plasma metabolites with opposite association with species positively and negatively associated with hypoxia parameters, respectively. INTERPRETATION: OSA-related hypoxia, but not the number of apneas/hypopneas, is associated with specific gut microbiota species and functions. Our findings lay the foundation for future research on the gut microbiota-mediated health effects of OSA.


Subject(s)
Gastrointestinal Microbiome , Sleep Apnea, Obstructive , Adult , Animals , Humans , Cross-Sectional Studies , Sweden/epidemiology , Hypoxia
7.
PLoS One ; 18(2): e0282433, 2023.
Article in English | MEDLINE | ID: mdl-36848351

ABSTRACT

BACKGROUND: The genetic background of general obesity and fat distribution is different, pointing to separate underlying physiology. Here, we searched for metabolites and lipoprotein particles associated with fat distribution, measured as waist/hip ratio adjusted for fat mass (WHRadjfatmass), and general adiposity measured as percentage fat mass. METHOD: The sex-stratified association of 791 metabolites detected by liquid chromatography-mass spectrometry (LC-MS) and 91 lipoprotein particles measured by nuclear magnetic spectroscopy (NMR) with WHRadjfatmass and fat mass were assessed using three population-based cohorts: EpiHealth (n = 2350) as discovery cohort, with PIVUS (n = 603) and POEM (n = 502) as replication cohorts. RESULTS: Of the 193 LC-MS-metabolites being associated with WHRadjfatmass in EpiHealth (false discovery rate (FDR) <5%), 52 were replicated in a meta-analysis of PIVUS and POEM. Nine metabolites, including ceramides, sphingomyelins or glycerophosphatidylcholines, were inversely associated with WHRadjfatmass in both sexes. Two of the sphingomyelins (d18:2/24:1, d18:1/24:2 and d18:2/24:2) were not associated with fat mass (p>0.50). Out of 91, 82 lipoprotein particles were associated with WHRadjfatmass in EpiHealth and 42 were replicated. Fourteen of those were associated in both sexes and belonged to very-large or large HDL particles, all being inversely associated with both WHRadjfatmass and fat mass. CONCLUSION: Two sphingomyelins were inversely linked to body fat distribution in both men and women without being associated with fat mass, while very-large and large HDL particles were inversely associated with both fat distribution and fat mass. If these metabolites represent a link between an impaired fat distribution and cardiometabolic diseases remains to be established.


Subject(s)
Obesity , Sphingomyelins , Male , Humans , Female , Waist-Hip Ratio , Cohort Studies , Metabolome , Lipoproteins
8.
Nat Commun ; 13(1): 5370, 2022 09 23.
Article in English | MEDLINE | ID: mdl-36151114

ABSTRACT

Human gut microbiota produce a variety of molecules, some of which enter the bloodstream and impact health. Conversely, dietary or pharmacological compounds may affect the microbiota before entering the circulation. Characterization of these interactions is an important step towards understanding the effects of the gut microbiota on health. In this cross-sectional study, we used deep metagenomic sequencing and ultra-high-performance liquid chromatography linked to mass spectrometry for a detailed characterization of the gut microbiota and plasma metabolome, respectively, of 8583 participants invited at age 50 to 64 from the population-based Swedish CArdioPulmonary bioImage Study. Here, we find that the gut microbiota explain up to 58% of the variance of individual plasma metabolites and we present 997 associations between alpha diversity and plasma metabolites and 546,819 associations between specific gut metagenomic species and plasma metabolites in an online atlas ( https://gutsyatlas.serve.scilifelab.se/ ). We exemplify the potential of this resource by presenting novel associations between dietary factors and oral medication with the gut microbiome, and microbial species strongly associated with the uremic toxin p-cresol sulfate. This resource can be used as the basis for targeted studies of perturbation of specific metabolites and for identification of candidate plasma biomarkers of gut microbiota composition.


Subject(s)
Gastrointestinal Microbiome , Biomarkers , Cross-Sectional Studies , Gastrointestinal Microbiome/genetics , Humans , Metabolome , Metabolomics/methods , Middle Aged , Uremic Toxins
9.
Diabetes Obes Metab ; 24(10): 2008-2016, 2022 10.
Article in English | MEDLINE | ID: mdl-35676808

ABSTRACT

AIMS: To determine whether obesity-associated metabolites are associated with type 2 diabetes (T2DM) risk among South Asians. MATERIALS AND METHODS: Serum-based nuclear magnetic resonance imaging metabolomics data were generated from two South Asian population-based prospective cohorts from Karachi, Pakistan: CARRS1 (N = 4017) and CARRS2 (N = 4802). Participants in both cohorts were followed up for 5 years and incident T2DM was ascertained. A nested case-control study approach was developed to select participants from CARRS1 (Ncases  = 197 and Ncontrols  = 195) and CARRS2 (Ncases  = 194 and Ncontrols  = 200), respectively. First, we investigated the association of 224 metabolites with general obesity based on body mass index and with central obesity based on waist-hip ratio, and then the top obesity-associated metabolites were studied in relation to incident T2DM. RESULTS: In a combined sample of the CARRS1 and CARRS2 cohorts, out of 224 metabolites, 12 were associated with general obesity and, of these, one was associated with incident T2DM. Fifteen out of 224 metabolites were associated with central obesity and, of these, 10 were associated with incident T2DM. The higher level of total cholesterol in high-density lipoprotein (HDL) was associated with reduced T2DM risk (odds ratio [OR] 0.68, 95% confidence interval [CI] 0.53, 0.86; P = 1.2 × 10-3 ), while higher cholesterol esters in large very-low-density lipoprotein (VLDL) particles were associated with increased T2DM risk (OR 1.90, 95% CI 1.40, 2.58; P = 3.5 × 10-5 ). CONCLUSION: Total cholesterol in HDL and cholesterol esters in large VLDL particles may be an important biomarker in the identification of early development of obesity-associated T2DM risk among South Asian adults.


Subject(s)
Diabetes Mellitus, Type 2 , Adult , Case-Control Studies , Cholesterol Esters , Diabetes Mellitus, Type 2/complications , Diabetes Mellitus, Type 2/epidemiology , Diabetes Mellitus, Type 2/metabolism , Humans , Obesity/complications , Obesity/epidemiology , Obesity, Abdominal , Prospective Studies , Risk Factors
10.
Front Genet ; 13: 842223, 2022.
Article in English | MEDLINE | ID: mdl-35571065

ABSTRACT

Epidemiological studies have provided extensive evidence regarding the role of psychological risk factors in the pathogenesis of cardiovascular disease (CVD), but whether these associations are causal in nature is still unknown. We aimed to investigate whether the association between the wellbeing spectrum (WBS; derived from four psychological traits including life satisfaction, positive affect, neuroticism, and depressive symptoms) and CVD risk is causal. By employing a two-sample Mendelian randomization (MR) approach, the effect of the WBS on four CVD outcomes, including atrial fibrillation, heart failure, myocardial infarction, and ischemic stroke, was investigated. The genetically predicted WBS was associated with 38% lower risk for heart failure (odds ratio (OR): 0.62; 95% confidence interval [CI]: 0.50-0.78; P: 2.2 × 10-5) and 40% reduced risk of myocardial infarction (OR: 0.60; 95% CI: 0.47-0.78; P: 1.1 × 10-4). Of the WBS constituent traits, only depressive symptoms showed a positive causal association with heart failure and myocardial infarction. Neither WBS nor WBS constituent traits were associated with atrial fibrillation and ischemic stroke. In multivariable MR analyses, when genetic instruments for traditional CVD risk factors were also taken into consideration, the WBS was causally associated with a reduced risk for heart failure (OR: 0.72; 95% CI: 0.58-0.88; P: 0.001) and myocardial infarction (OR: 0.67; 95% CI: 0.52-0.86; P: 0.002). This study provides evidence that a higher WBS is causally associated with a decreased risk of developing CVD and, more specifically, myocardial infarction; moreover, the association is mainly driven by depressive symptoms. These results support current guidelines that suggest improving psychological wellbeing may help in reducing the burden of cardiovascular disease.

11.
Nutrients ; 14(3)2022 Jan 25.
Article in English | MEDLINE | ID: mdl-35276868

ABSTRACT

Elevated circulating copper levels have been associated with chronic kidney disease (CKD), kidney damage, and decline in kidney function. Using a two sample Mendelian randomization approach where copper-associated genetic variants were used as instrumental variables, genetically predicted higher circulating copper levels were associated with higher CKD prevalence (odds ratio 1.17; 95% confidence interval 1.04, 1.32; p-value = 0.009). There was suggestive evidence that genetically predicted higher copper was associated with a lower estimated glomerular filtration rate and a more rapid kidney damage decline. In conclusion, we observed that elevated circulating copper levels may be a causal risk factor for CKD.


Subject(s)
Mendelian Randomization Analysis , Renal Insufficiency, Chronic , Copper , Genetic Predisposition to Disease , Glomerular Filtration Rate/genetics , Humans , Renal Insufficiency, Chronic/epidemiology , Renal Insufficiency, Chronic/genetics
12.
Diabetes ; 71(2): 329-339, 2022 02 01.
Article in English | MEDLINE | ID: mdl-34785567

ABSTRACT

Obesity is associated with adverse health outcomes, but the metabolic effects have not yet been fully elucidated. We aimed to investigate the association between adiposity and circulating metabolites and to address causality with Mendelian randomization (MR). Metabolomics data were generated with nontargeted ultraperformance liquid chromatography coupled to time-of-flight mass spectrometry in plasma and serum from three population-based Swedish cohorts: ULSAM (N = 1,135), PIVUS (N = 970), and TwinGene (N = 2,059). We assessed associations of general adiposity measured as BMI and central body fat distribution measured as waist-to-hip ratio adjusted for BMI (WHRadjBMI) with 210 annotated metabolites. We used MR analysis to assess causal effects. Lastly, we attempted to replicate the MR findings in the KORA and TwinsUK cohorts (N = 7,373), the CHARGE Consortium (N = 8,631), the Framingham Heart Study (N = 2,076), and the DIRECT Consortium (N = 3,029). BMI was associated with 77 metabolites, while WHRadjBMI was associated with 11 and 3 metabolites in women and men, respectively. The MR analyses in the Swedish cohorts suggested a causal association (P value <0.05) of increased general adiposity and reduced levels of arachidonic acid, dodecanedioic acid, and lysophosphatidylcholine (P-16:0) as well as with increased creatine levels. The results of the replication effort provided support for a causal association of adiposity with reduced levels of arachidonic acid (P value = 0.03). Adiposity is associated with variation of large parts of the circulating metabolome; however, further investigation of causality is required in well-powered cohorts.


Subject(s)
Adiposity/physiology , Metabolome , Obesity, Abdominal/blood , Adult , Aged , Aged, 80 and over , Body Fat Distribution , Body Mass Index , Cohort Studies , Female , Germany/epidemiology , Humans , Male , Mendelian Randomization Analysis , Metabolomics/methods , Middle Aged , Obesity, Abdominal/epidemiology , Obesity, Abdominal/metabolism , Risk Factors , Sweden/epidemiology , United Kingdom/epidemiology , United States/epidemiology , Waist-Hip Ratio
13.
JAMA Netw Open ; 3(11): e2025466, 2020 11 02.
Article in English | MEDLINE | ID: mdl-33211107

ABSTRACT

Importance: Higher Mediterranean diet (MED) intake has been associated with reduced risk of type 2 diabetes, but underlying biological mechanisms are unclear. Objective: To characterize the relative contribution of conventional and novel biomarkers in MED-associated type 2 diabetes risk reduction in a US population. Design, Setting, and Participants: This cohort study was conducted among 25 317 apparently healthy women. The participants with missing information regarding all traditional and novel metabolic biomarkers or those with baseline diabetes were excluded. Participants were invited for baseline assessment between September 1992 and May 1995. Data were collected from November 1992 to December 2017 and analyzed from December 2018 to December 2019. Exposures: MED intake score (range, 0 to 9) was computed from self-reported dietary intake, representing adherence to Mediterranean diet intake. Main Outcomes and Measures: Incident cases of type 2 diabetes, identified through annual questionnaires; reported cases were confirmed by either telephone interview or supplemental questionnaire. Proportion of reduced risk of type 2 diabetes explained by clinical risk factors and a panel of 40 biomarkers that represent different physiological pathways was estimated. Results: The mean (SD) age of the 25 317 female participants was 52.9 (9.9) years, and they were followed up for a mean (SD) of 19.8 (5.8) years. Higher baseline MED intake (score ≥6 vs ≤3) was associated with as much as a 30% lower type 2 diabetes risk (age-adjusted and energy-adjusted hazard ratio, 0.70; 95% CI, 0.62-0.79; when regression models were additionally adjusted with body mass index [BMI]: hazard ratio, 0.85; 95% CI, 0.76-0.96). Biomarkers of insulin resistance made the largest contribution to lower risk (accounting for 65.5% of the MED-type 2 diabetes association), followed by BMI (55.5%), high-density lipoprotein measures (53.0%), and inflammation (52.5%), with lesser contributions from branched-chain amino acids (34.5%), very low-density lipoprotein measures (32.0%), low-density lipoprotein measures (31.0%), blood pressure (29.0%), and apolipoproteins (23.5%), and minimal contribution (≤2%) from hemoglobin A1c. In post hoc subgroup analyses, the inverse association of MED diet with type 2 diabetes was seen only among women who had BMI of at least 25 at baseline but not those who had BMI of less than 25 (eg, women with BMI <25, age- and energy-adjusted HR for MED score ≥6 vs ≤3, 1.01; 95% CI, 0.77-1.33; P for trend = .92; women with BMI ≥25: HR, 0.76; 95% CI, 0.67-0.87; P for trend < .001). Conclusions and Relevance: In this cohort study, higher MED intake scores were associated with a 30% relative risk reduction in type 2 diabetes during a 20-year period, which could be explained in large part by biomarkers of insulin resistance, BMI, lipoprotein metabolism, and inflammation.


Subject(s)
Diabetes Mellitus, Type 2/epidemiology , Diet, Mediterranean/statistics & numerical data , Adiposity , Adult , Amino Acids, Branched-Chain/metabolism , Apolipoprotein A-I/metabolism , Apolipoprotein B-100/metabolism , Apolipoproteins/metabolism , Body Mass Index , C-Reactive Protein/metabolism , Cholesterol, HDL/metabolism , Cholesterol, LDL/metabolism , Diet/statistics & numerical data , Female , Glycated Hemoglobin/metabolism , Humans , Inflammation/metabolism , Insulin Resistance , Intercellular Adhesion Molecule-1/metabolism , Lipoprotein(a)/metabolism , Lipoproteins, HDL/metabolism , Lipoproteins, LDL/metabolism , Lipoproteins, VLDL/metabolism , Middle Aged , Proportional Hazards Models , Protective Factors , Proton Magnetic Resonance Spectroscopy , Triglycerides/metabolism
14.
J Am Heart Assoc ; 9(16): e014513, 2020 08 18.
Article in English | MEDLINE | ID: mdl-32805198

ABSTRACT

Background Genome-wide association studies have identified >1000 genetic variants cross-sectionally associated with blood pressure variation and prevalent hypertension. These discoveries might aid the early identification of subpopulations at risk of developing hypertension or provide targets for drug development, amongst other applications. The aim of the present study was to analyze the association of blood pressure-associated variants with long-term changes (10 years) in blood pressure and also to assess their ability to predict hypertension incidence compared with traditional risk variables in a Swedish population. Methods and Results We constructed 6 genetic risk scores (GRSs) by summing the dosage of the effect allele at each locus of genetic variants previously associated with blood pressure traits (systolic blood pressure GRS (GRSSBP): 554 variants; diastolic blood pressure GRS (GRSDBP): 481 variants; mean arterial pressure GRS (GRSMAP): 20 variants; pulse pressure GRS (GRSPP): 478 variants; hypertension GRS (GRSHTN): 22 variants; combined GRS (GRScomb): 1152 variants). Each GRS was longitudinally associated with its corresponding blood pressure trait, with estimated effects per GRS SD unit of 0.50 to 1.21 mm Hg for quantitative traits and odds ratios (ORs) of 1.10 to 1.35 for hypertension incidence traits. The GRScomb was also significantly associated with hypertension incidence defined according to European guidelines (OR, 1.22 per SD; 95% CI, 1.10‒1.35) but not US guidelines (OR, 1.11 per SD; 95% CI, 0.99‒1.25) while controlling for traditional risk factors. The addition of GRScomb to a model containing traditional risk factors only marginally improved discrimination (Δarea under the ROC curve = 0.001-0.002). Conclusions GRSs based on discovered blood pressure-associated variants are associated with long-term changes in blood pressure traits and hypertension incidence, but the inclusion of genetic factors in a model composed of conventional hypertension risk factors did not yield a material increase in predictive ability.


Subject(s)
Blood Pressure/genetics , Genetic Loci , Genetic Variation , Hypertension/genetics , Blood Pressure/physiology , Female , Genetic Predisposition to Disease , Genome-Wide Association Study , Guidelines as Topic , Humans , Hypertension/epidemiology , Incidence , Male , Middle Aged , Odds Ratio , Predictive Value of Tests , Prospective Studies , ROC Curve , Risk Factors , Sweden , Time Factors
15.
Am J Epidemiol ; 189(5): 445-460, 2020 05 05.
Article in English | MEDLINE | ID: mdl-31647510

ABSTRACT

We examined interactions between lifestyle factors and genetic risk of type 2 diabetes (T2D-GR), captured by genetic risk score (GRS) and family history (FH). Our initial study cohort included 20,524 European-ancestry participants, of whom 1,897 developed incident T2D, in the Nurses' Health Study (1984-2016), Nurses' Health Study II (1989-2016), and Health Professionals Follow-up Study (1986-2016). The analyses were replicated in 19,183 European-ancestry controls and 2,850 incident T2D cases in the Women's Genome Health Study (1992-2016). We defined 2 categories of T2D-GR: high GRS (upper one-third) with FH and low GRS or without FH. Compared with participants with the healthiest lifestyle and low T2D-GR, the relative risk of T2D for participants with the healthiest lifestyle and high T2D-GR was 2.24 (95% confidence interval (CI): 1.76, 2.86); for participants with the least healthy lifestyle and low T2D-GR, it was 4.05 (95% CI: 3.56, 4.62); and for participants with the least healthy lifestyle and high T2D-GR, it was 8.72 (95% CI: 7.46, 10.19). We found a significant departure from an additive risk difference model in both the initial and replication cohorts, suggesting that adherence to a healthy lifestyle could lead to greater absolute risk reduction among those with high T2D-GR. The public health implication is that a healthy lifestyle is important for diabetes prevention, especially for individuals with high GRS and FH of T2D.


Subject(s)
Diabetes Mellitus, Type 2/genetics , Genetic Predisposition to Disease , Life Style , Adult , Aged , Diabetes Mellitus, Type 2/epidemiology , Female , Humans , Incidence , Male , Middle Aged , Prospective Studies , Risk Assessment , Risk Factors , United States/epidemiology
16.
J Am Heart Assoc ; 8(11): e011860, 2019 06 04.
Article in English | MEDLINE | ID: mdl-31433701

ABSTRACT

Background Mechanisms related to the influence of diet on the development of cardiovascular disease are not entirely understood, and protein biomarkers may help to understand these pathways. Studies of biomarkers identified with multiplex proteomic methods and dietary patterns are largely lacking. Methods and Results Dietary patterns were generated through principal component analysis in 2 population-based Swedish cohorts, the EpiHealth (EpiHealth study; n=20 817 men and women) and the SMCC (Swedish Mammography Cohort Clinical [n=4650 women]). A set of 184 protein cardiovascular disease biomarkers were measured with 2 high-throughput, multiplex immunoassays. Discovery and replication multivariable linear regression analyses were used to investigate the associations between the principal component analysis-generated dietary patterns and the cardiovascular disease-associated protein biomarkers, first in the EpiHealth (n=2240) and then in the Swedish Mammography Cohort Clinical. Four main dietary patterns were identified in the EpiHealth, and 3 patterns were identified in the Swedish Mammography Cohort Clinical. The healthy and the Western/traditional patterns were found in both cohorts. In the EpiHealth, 57 protein biomarkers were associated with 3 of the dietary patterns, and 41 of these associations were replicated in the Swedish Mammography Cohort Clinical, with effect estimates ranging from 0.057 to 0.083 (P-value range, 5.0×10-2-1.4×10-9) for each SD increase in the relative protein concentration. Independent associations were established between dietary patterns and the 21 protein biomarkers. Two proteins, myeloperoxidase and resistin, were associated with both the healthy and the light meal pattern but in opposite directions. Conclusions We have discovered and replicated independent associations between dietary patterns and 21 biomarkers linked to cardiovascular disease, which have a role in the pathways related to inflammation, endothelial and immune function, cell adhesion, and metabolism.


Subject(s)
Blood Proteins/analysis , Cardiovascular Diseases/blood , Diet , Feeding Behavior , Aged , Biomarkers/blood , Cardiovascular Diseases/diagnosis , Cardiovascular Diseases/epidemiology , Cross-Sectional Studies , Diet/adverse effects , Diet, Healthy , Female , High-Throughput Screening Assays , Humans , Immunoassay , Male , Middle Aged , Nutritional Status , Nutritive Value , Peroxidase/blood , Proteomics , Resistin/blood , Sweden/epidemiology
18.
Commun Biol ; 2: 119, 2019.
Article in English | MEDLINE | ID: mdl-30937401

ABSTRACT

There is evidence that lower height is associated with a higher risk of coronary artery disease (CAD) and increased risk of type 2 diabetes (T2D). It is not clear though whether these associations are causal, direct or mediated by other factors. Here we show that one standard deviation higher genetically determined height (~6.5 cm) is causally associated with a 16% decrease in CAD risk (OR = 0.84, 95% CI 0.80-0.87). This causal association remains after performing sensitivity analyses relaxing pleiotropy assumptions. The causal effect of height on CAD risk is reduced by 1-3% after adjustment for potential mediators (lipids, blood pressure, glycaemic traits, body mass index, socio-economic status). In contrast, our data suggest that lung function (measured by forced expiratory volume [FEV1] and forced vital capacity [FVC]) is a mediator of the effect of height on CAD. We observe no direct causal effect of height on the risk of T2D.


Subject(s)
Body Height/genetics , Coronary Artery Disease/epidemiology , Coronary Artery Disease/genetics , Diabetes Mellitus, Type 2/epidemiology , Diabetes Mellitus, Type 2/genetics , Lung/physiology , Mendelian Randomization Analysis/methods , Adult , Aged , Body Mass Index , Cohort Studies , Female , Forced Expiratory Volume , Genotype , Humans , Male , Middle Aged , Polymorphism, Single Nucleotide/genetics , Risk Factors , United Kingdom/epidemiology , Vital Capacity
19.
Article in English | MEDLINE | ID: mdl-31024458

ABSTRACT

The rapid rise of obesity, type 2 diabetes mellitus (T2DM) and cardiovascular disease (CVD) during the last few decades among South Asians has been largely attributed to a major shift in lifestyles including physical inactivity, unhealthy dietary patterns, and an overall pattern of sedentary lifestyle. Genetic predisposition to these cardiometabolic risk factors may have interacted with these obesogenic environments in determining the higher cardiometabolic disease prevalence. Based on the premise that gene-environment interactions cause obesity and cardiometabolic diseases, we systematically searched the literature and considered the knowledge gaps that future studies might fulfill. We identified only seven published studies that focused specifically on gene-environment interactions for cardiometabolic traits in South Asians, most of which were limited by relatively small sample and lack of replication. Some studies reported that the differences in metabolic response to higher physical activity and low caloric diet might be modified by genetic risk related to these cardiometabolic traits. Although studies on gene lifestyle interactions in cardiometabolic traits report significant interactions, future studies must focus on more precise assessment of lifestyle factors, investigation of a larger set of genetic variants and the application of powerful statistical methods to facilitate translatable approaches. Future studies should also be integrated with findings both using mechanistic studies through laboratory settings and randomized clinical trials for clinical outcomes.

20.
Arterioscler Thromb Vasc Biol ; 39(1): 97-106, 2019 01.
Article in English | MEDLINE | ID: mdl-30565958

ABSTRACT

Objective- Higher triglyceride (TG) is a risk factor for incident type 2 diabetes mellitus (T2DM), but paradoxically, genetic susceptibility for higher TG has been associated with lower T2DM risk. There is also evidence that the genetic association may be modified by baseline TG. Whether such associations can be replicated and the interaction is selective for certain TG-rich lipoprotein particles remains to be explored. Approach and Results- Cox regression involving TG, TG-rich lipoprotein particles, and genetic determinants of TG was performed among 15 813 participants with baseline fasting status in the WGHS (Women's Genome Health Study), including 1453 T2DM incident cases during a mean 18.6 (SD=5.3) years of follow-up. A weighted, 40-single-nucleotide polymorphism TG genetic risk score was inversely associated with incident T2DM (hazard ratio [95% CI], 0.66 [0.58-0.75]/10-TG risk alleles; P<0.0001) with adjustment for baseline body mass index, HDL (high-density lipoprotein) cholesterol, and TG. TG-associated risk was higher among individuals in the low compared with the high 40-single-nucleotide polymorphism TG genetic risk score tertile (hazard ratio [95% CI], 1.98 [1.83-2.14] versus 1.68 [1.58-1.80] per mmol/L; Pinteraction=0.0007). In TG-adjusted analysis, large and medium but not small TG-rich lipoprotein particles were associated with higher T2DM incidence for successively lower 40-single-nucleotide polymorphism TG genetic risk score tertiles, Pinteraction=0.013, 0.012, and 0.620 across tertiles, respectively. Conclusions- Our results confirm the previous observations of the paradoxical associations of TG with T2DM while focusing attention on the larger TG-rich lipoprotein particle subfractions, suggesting their importance in clinical profiling of T2DM risk.


Subject(s)
Diabetes Mellitus, Type 2/genetics , Polymorphism, Single Nucleotide , Triglycerides/blood , Aged , Diabetes Mellitus, Type 2/blood , Diabetes Mellitus, Type 2/etiology , Female , Humans , Lipoproteins/blood , Middle Aged , Proportional Hazards Models , Risk , Women's Health
SELECTION OF CITATIONS
SEARCH DETAIL
...