Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 182
Filter
1.
Reprod Domest Anim ; 59(5): e14579, 2024 May.
Article in English | MEDLINE | ID: mdl-38715456

ABSTRACT

This study evaluates factors influencing pregnancy rates per artificial insemination (P/AI) and pregnancy loss in Lohi ewes undergoing laparoscopic AI with frozen-thawed semen under sub-tropical conditions. Data from three experiments comprising ewes (n = 358) of mixed parity (nulliparous; NP and parous; P), various body condition score (BCS) and assigned to long-term (LTP, 11 days) and short-term (STP, 5 days) oestrus synchronization regimen across high breeding season (HBS) and low breeding season (LBS) were analysed. Laparoscopic insemination was conducted 54 h post-sponge removal. Pregnancy diagnosis and loss were evaluated on days 35 and 90 post-insemination via ultrasonography. Results showed parity significantly influenced P/AI, with nulliparous ewes achieving higher pregnancy ratios than parous ewes (p = .001). BCS significantly influenced P/AI (p < .05), with a quadratic relationship observed between BCS and season (BCS*BCS*Season; p = .07). Progestin treatment did not significantly influence the ratio of pregnant ewes (p = .07). Pregnancy losses were significantly higher during LBS than HBS (p < .05), irrespective of progestin treatment. In conclusion, parity and BCS significantly influenced P/AI, with BCS demonstrating a quadratic association with season. Ewes bred during LBS experienced higher pregnancy losses than HBS, irrespective of progestin treatment.


Subject(s)
Cryopreservation , Estrus Synchronization , Insemination, Artificial , Laparoscopy , Pregnancy Rate , Seasons , Semen Preservation , Animals , Female , Pregnancy , Insemination, Artificial/veterinary , Semen Preservation/veterinary , Laparoscopy/veterinary , Male , Cryopreservation/veterinary , Abortion, Veterinary , Sheep, Domestic , Parity , Sheep
2.
J Environ Manage ; 360: 121178, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38796869

ABSTRACT

Despite the widespread usage to safeguard crops and manage pests, pesticides have detrimental effects on the environment and human health. The necessity to find sustainable agricultural techniques and meet the growing demand for food production has spurred the quest for pesticide substitutes other than traditional ones. The unique qualities of nanotechnology, including its high surface area-to-volume ratio, controlled release, and better stability, have made it a promising choice for pest management. Over the past ten years, there has been a noticeable growth in the usage of nanomaterials for pest management; however, concerns about their possible effects on the environment and human health have also surfaced. The purpose of this review paper is to give a broad overview of the worldwide trends and environmental effects of using nanomaterials in place of pesticides. The various types of nanomaterials, their characteristics, and their possible application in crop protection are covered. The limits of the current regulatory frameworks for nanomaterials in agriculture are further highlighted in this review. Additionally, it describes how standard testing procedures must be followed to assess the effects of nanomaterials on the environment and human health before their commercialization. In order to establish sustainable and secure nanotechnology-based pest control techniques, the review concludes by highlighting the significance of taking into account the possible hazards and benefits of nanomaterials for pest management and the necessity of an integrated approach. It also emphasizes the importance of more investigation into the behavior and environmental fate of nanomaterials to guarantee their safe and efficient application in agriculture.


Subject(s)
Agriculture , Nanostructures , Pesticides , Pest Control/methods , Nanotechnology , Humans , Crop Protection
3.
Biomed Pharmacother ; 175: 116791, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38776672

ABSTRACT

Epilepsy is an abiding condition associated with recurrent seizure attacks along with associated neurological and psychological emanation owing to disparity of excitatory and inhibitory neurotransmission. The current study encompasses the assessment of the Nyctanthes arbor-tristis L. methanolic extract (Na.Cr) in the management of convulsive state and concomitant conditions owing to epilepsy. The latency of seizure incidence was assessed using pentylenetetrazol (PTZ) kindling models along with EEG in Na.Cr pretreated mice, trailed by behavior assessment (anxiety and memory), biochemical assay, histopathological alterations, chemical profiling through GCMS, and molecular docking. The chronic assessment of PTZ-induced kindled mice depicted salvation in a dose-related pattern and outcomes were noticeable with extract at 400 mg/kg. The extract at 400 mg/kg defends the progress of kindling seizures and associated EEG. Co-morbid conditions in mice emanating owing to epileptic outbreaks were validated by behavioral testing and the outcome depicted a noticeable defense related to anxiety (P<0.001) and cognitive deficit (P<0.001) at 400 mg/kg. The isolated brains were evaluated for oxidative stress and the outcome demonstrated a noticeable effect in a dose-dependent pattern. Treatment with Na.Cr. also preserved the brain from PTZ induced neuronal damage as indicated by histopathological analysis. Furthermore, the GCMS outcome predicted 28 compounds abundantly found in the plant. The results congregated in the current experiments deliver valued evidence about the defensive response apportioned by Na.Cr which might be due to decline in oxidative stress, AChE level, and GABAergic modulation. These activities may contribute to fundamental pharmacology and elucidate some mechanisms behind the activities of Nyctanthes arbor-tristis.


Subject(s)
Anticonvulsants , Electroencephalography , Kindling, Neurologic , Pentylenetetrazole , Plant Extracts , Seizures , Animals , Kindling, Neurologic/drug effects , Mice , Plant Extracts/pharmacology , Male , Seizures/chemically induced , Seizures/drug therapy , Seizures/physiopathology , Anticonvulsants/pharmacology , Behavior, Animal/drug effects , Molecular Docking Simulation , Computer Simulation , Disease Models, Animal , Oxidative Stress/drug effects , Epilepsy/chemically induced , Epilepsy/drug therapy
4.
medRxiv ; 2024 Mar 26.
Article in English | MEDLINE | ID: mdl-38585974

ABSTRACT

Most current studies rely on short-read sequencing to detect somatic structural variation (SV) in cancer genomes. Long-read sequencing offers the advantage of better mappability and long-range phasing, which results in substantial improvements in germline SV detection. However, current long-read SV detection methods do not generalize well to the analysis of somatic SVs in tumor genomes with complex rearrangements, heterogeneity, and aneuploidy. Here, we present Severus: a method for the accurate detection of different types of somatic SVs using a phased breakpoint graph approach. To benchmark various short- and long-read SV detection methods, we sequenced five tumor/normal cell line pairs with Illumina, Nanopore, and PacBio sequencing platforms; on this benchmark Severus showed the highest F1 scores (harmonic mean of the precision and recall) as compared to long-read and short-read methods. We then applied Severus to three clinical cases of pediatric cancer, demonstrating concordance with known genetic findings as well as revealing clinically relevant cryptic rearrangements missed by standard genomic panels.

6.
Eur J Hum Genet ; 2024 Apr 25.
Article in English | MEDLINE | ID: mdl-38664571

ABSTRACT

Facioscapulohumeral muscular dystrophy (FSHD) is the third most common form of hereditary myopathy. Sixty per cent of the world's population lives in Asia, so a significant percentage of the world's FSHD participants is expected to live there. To date, most FSHD studies have involved individuals of European descent, yet small-scale studies of East-Asian populations suggest that the likelihood of developing FSHD may vary. Here, we present the first genetically confirmed FSHD cohort of Indian ancestry, which suggests a pathogenic FSHD1 allele size distribution intermediate between European and North-East Asian populations and more asymptomatic carriers of 4 unit and 5 unit FSHD1 alleles than observed in European populations. Our data provides important evidence of differences relevant to clinical diagnostics and underscores the need for global FSHD participation in research and trial-ready Indian FSHD cohorts.

7.
Ann Card Anaesth ; 27(2): 156-158, 2024 Apr 01.
Article in English | MEDLINE | ID: mdl-38607879

ABSTRACT

ABSTRACT: Migration and embolization of a deployed stent is a rare complication of percutaneous coronary interventions (PCI) and can result in serious and potentially life-threatening complications. There are many reports of intracoronary stent entrapment, stripping, and dislodgement during PCI, however, only a few reports about migration. We report a rare case of migration of the left main coronary stent into the aortic root, which happened 5 months after the procedure and was treated by its partial removal through aortotomy along with surgical revascularization. The patient was discharged 5 days later, after an uneventful hospital stay.


Subject(s)
Embolization, Therapeutic , Percutaneous Coronary Intervention , Humans , Aorta, Thoracic , Percutaneous Coronary Intervention/adverse effects , Aorta/diagnostic imaging , Aorta/surgery , Stents
8.
Int Ophthalmol ; 44(1): 162, 2024 Mar 27.
Article in English | MEDLINE | ID: mdl-38538983

ABSTRACT

PURPOSE: We aimed to identify ocular comorbidities and reasons of blindness in monocular patients and to compare visual outcomes of cataract surgery between monocular and binocular patients. METHODS: A single-center case-control study was conducted between November 2011 and May 2019 to compare consecutive series of patients needing cataract surgery in Strasbourg University Hospitals, France. Cases were patients with permanent monocular vision loss. Controls were binocularly sighted patients. All patients underwent cataract surgery using phacoemulsification technique. Chart analysis included demographic data, medical history, and surgical determinants data. Student's t tests and Fisher's exact tests were the main methods used for statistical analysis. RESULTS: Each group included 80 patients. The mean age at the time of surgery was significantly higher in monocular than binocular patients (77 vs. 71 years, p < 0.001). Thirty-two monocular patients (40%) had ocular comorbidities, compared to only 19 (23%) in the control group (p < 0.05). The leading cause of monocular status was amblyopia caused by strabismus (22 patients, 27.5%). Age-related macular degeneration, open-angle glaucoma, and diabetic retinopathy were the three main ocular comorbidities that were observed in the monocular group. Monocular patients had significantly lower visual acuity than the control group (p < 0.01) before and after cataract surgery. Conversely, improvement in visual acuity after surgery was not statistically different between groups (p = 0.054). There was no statistically significant difference in the rate of surgical complications between groups (p = 0.622). CONCLUSIONS: This study illustrates that cataract surgery in monocular patients is not more complicated than in binocular patients, but that it is significantly delayed.


Subject(s)
Cataract Extraction , Cataract , Glaucoma, Open-Angle , Phacoemulsification , Humans , Case-Control Studies , Cataract/complications , Glaucoma, Open-Angle/complications , Treatment Outcome , Blindness , Vision, Binocular
9.
ACS Omega ; 9(11): 13208-13216, 2024 Mar 19.
Article in English | MEDLINE | ID: mdl-38524435

ABSTRACT

Silver nanoparticles (Ag-NPs) were synthesized by using the polyol method. The structural and morphological characteristics of Ag-NPs were studied by using X-ray diffraction (XRD) and field-emission scanning electron microscopy (FE-SEM). The XRD analysis revealed the formation of single-phase polycrystalline Ag-NPs with an average crystallite size and lattice constant of ∼23 nm and 4.07 Å, respectively, while the FE-SEM shows the formation of a uniform and spherical morphology. Energy-dispersive X-ray spectroscopy confirmed the formation of single-phase Ag-NPs, and no extra elements were detected. A strong absorption peak at ∼427 nm was observed in the UV-vis spectrum, which reflects the surface plasmon resonance (SPR) behavior characteristic of Ag-NPs with a spherical morphology. Fourier-transform infrared (FTIR) spectra also supported the XRD and EDX results with regard to the purity of the prepared Ag-NPs. Anti-inflammatory activity was tested using HRBCs membrane stabilization and heat-induced hemolysis assays. The antibacterial activity of Ag-NPs was evaluated against four different types of pathogenic bacteria by using the disc diffusion method (DDM). The Gram-negative bacterial strains used in this study are Escherichia coli (E. coli), Klebsiella, Shigella, and Salmonella. The analysis suggested that the antibacterial activities of Ag-NPs have an influential role in inhibiting the growth of the tested Gram-negative bacteria, and thus Ag-NPs can find a potential application in the pharmaceutical industry.

10.
Cell Stress Chaperones ; 29(2): 326-337, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38518861

ABSTRACT

Global efforts to eradicate malaria are threatened by multiple factors, particularly the emergence of antimalarial drug resistant strains of Plasmodium falciparum. Heat shock proteins (HSPs), particularly P. falciparum HSPs (PfHSPs), represent promising drug targets due to their essential roles in parasite survival and virulence across the various life cycle stages. Despite structural similarities between human and malarial HSPs posing challenges, there is substantial evidence for subtle differences that could be exploited for selective drug targeting. This review provides an update on the potential of targeting various PfHSP families (particularly PfHSP40, PfHSP70, and PfHSP90) and their interactions within PfHSP complexes as a strategy to develop new antimalarial drugs. In addition, the need for a deeper understanding of the role of HSP complexes at the host-parasite interface is highlighted, especially heterologous partnerships between human and malarial HSPs, as this opens novel opportunities for targeting protein-protein interactions crucial for malaria parasite survival and pathogenesis.


Subject(s)
Antimalarials , Malaria , Humans , Heat-Shock Proteins/metabolism , Plasmodium falciparum/metabolism , Antimalarials/pharmacology , Antimalarials/therapeutic use , Antimalarials/chemistry , HSP70 Heat-Shock Proteins/metabolism , Protozoan Proteins/metabolism
11.
Pharmaceuticals (Basel) ; 17(2)2024 Feb 19.
Article in English | MEDLINE | ID: mdl-38399480

ABSTRACT

Nadolol is a long-acting non-selective ß-adrenergic antagonist that helps treat angina and hypertension. The current study aimed to develop and validate the physiologically based pharmacokinetic model (PBPK) of nadolol in healthy adults, renal-compromised, and pediatric populations. A comprehensive PBPK model was established by utilizing a PK-Sim simulator. After establishing and validating the model in healthy adults, pathophysiological changes i.e., blood flow, hematocrit, and GFR that occur in renal failure were incorporated in the developed model, and the drug exposure was assessed through Box plots. The pediatric model was also developed and evaluated by considering the renal maturation process. The validation of the models was carried out by visual predictive checks, calculating predicted to observed (Rpre/obs) and the average fold error (AFE) of PK parameters i.e., the area under the concentration-time curve (AUC0-t), the maximum concentration in plasma (Cmax), and CL (clearance). The presented PBPK model successfully simulates the nadolol PK in healthy adults, renal-impaired, and pediatric populations, as the Rpre/obs values of all PK parameters fall within the acceptable range. The established PBPK model can be useful in nadolol dose optimization in patients with renal failure and children with supraventricular tachycardia.

12.
Am J Hum Genet ; 111(3): 544-561, 2024 Mar 07.
Article in English | MEDLINE | ID: mdl-38307027

ABSTRACT

Cervical cancer is caused by human papillomavirus (HPV) infection, has few approved targeted therapeutics, and is the most common cause of cancer death in low-resource countries. We characterized 19 cervical and four head and neck cancer cell lines using long-read DNA and RNA sequencing and identified the HPV types, HPV integration sites, chromosomal alterations, and cancer driver mutations. Structural variation analysis revealed telomeric deletions associated with DNA inversions resulting from breakage-fusion-bridge (BFB) cycles. BFB is a common mechanism of chromosomal alterations in cancer, and our study applies long-read sequencing to this important chromosomal rearrangement type. Analysis of the inversion sites revealed staggered ends consistent with exonuclease digestion of the DNA after breakage. Some BFB events are complex, involving inter- or intra-chromosomal insertions or rearrangements. None of the BFB breakpoints had telomere sequences added to resolve the dicentric chromosomes, and only one BFB breakpoint showed chromothripsis. Five cell lines have a chromosomal region 11q BFB event, with YAP1-BIRC3-BIRC2 amplification. Indeed, YAP1 amplification is associated with a 10-year-earlier age of diagnosis of cervical cancer and is three times more common in African American women. This suggests that individuals with cervical cancer and YAP1-BIRC3-BIRC2 amplification, especially those of African ancestry, might benefit from targeted therapy. In summary, we uncovered valuable insights into the mechanisms and consequences of BFB cycles in cervical cancer using long-read sequencing.


Subject(s)
Papillomavirus Infections , Uterine Cervical Neoplasms , Female , Humans , Uterine Cervical Neoplasms/genetics , Chromosome Aberrations , Telomere/genetics , DNA
13.
Saudi Pharm J ; 32(1): 101930, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38226351

ABSTRACT

Perampanel (PER), a novel 3rd-generation antiseizure drug that modulates altered post-synaptic glutamatergic storming by selectively inhibiting AMPA receptors, is recently approved to treat intractable forms of seizures. However, to date, presumably consequences of long-term PER therapy on the comorbid deleterious psychiatric disturbances and its correlation with neuroinflammatory parameters are not fully investigated in chronic models of epilepsy. Therefore, we investigated the real-time effect of PER on brain electroencephalographic (EEG) activity, behavioral alterations, redox balance, and relative mRNA expression in pentylenetetrazole (PTZ) induced kindling. Male BALB/c mice were pretreated with PER (0.125, 0.25, and 0.5 mg/kg) for 3 weeks and challenged with 11 injections of PTZ at the sub-threshold dose of 40 mg/kg every other day. vEEG from implanted cortical electrodes was monitored to elucidate seizure propagation and behavioral manifestations. Recorded EEG signals exhibited that PER 0.5 mg/kg pretreatment exceptionally impeded the onset of sharp epileptic spike-wave discharges and associated motor symptoms. Additionally, qEEG analysis showed that PER prevented alterations in absolute mean spectral power and reduced RMS amplitude of epileptogenic spikes vs PTZ control. Furthermore, our outcomes illustrated that PER dose-dependently attenuated PTZ-evoked anxiety-like behavior, memory deficits, and depressive-like behavior that was validated by a series of behavioral experiments. Moreover PER, significantly reduced lipid peroxidation, AChE, and increased levels of SOD and total thiol in the mice brain via AMPAR antagonism. Post-PTZ kindling provoked overstimulation of BDNF/TrkB signaling and increased release of pro-inflammatory cytokines that were reversed by PER with suppression of iNOS in brain immune cells. In conclusion, our findings highlight that PER might play an auspicious preventive role in the proepileptic transformation of brain circuits via suppression of BDNF/TrkB signaling and reduced transcriptional levels of neuroinflammatory markers leading to improvised epilepsy-induced neurobehavioral and neurochemical effects.

14.
Biomed Pharmacother ; 170: 115935, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38101280

ABSTRACT

Chemical kindling is broadly used experimental model to investigate novel treatments on the process of epileptogenesis and coexisting behavioral comorbidities. The current study aimed to investigate the low dose perampanel (PER) (0.125 and 0.5 mg/kg) and pregabalin (PG) (15 mg/kg) as standalone treatments and in combination on kindling-induced seizure progression with concurrent electroencephalographic alterations. Mice were subjected to pentylenetetrazole (PTZ)-induced kindling followed by neurobehavioral assessment for anxiety-like activity and cognitive deficit through behavioral experiments. The monotherapy with PER at 0.5 mg/kg and PG at 15 mg/kg delayed the kindling process but PRP+PG yielded pronounced benefits and hindered the development of seizures of higher severity. PER+PG combination relieved the animals from anxiety-like behavior in various employed anxiogenic tests. Furthermore, the kindling-associated cognitive deficit was protected by PER+PG combination as increased alteration behavior, discrimination index and latencies to enter the dark zone were noted in y-maze, object recognition and passive avoidance tests, respectively while shorter escape latencies were noted in water maze. The brain samples of kindled mice had elevated malondialdehyde and reduced catalase, superoxide dismutase and glutathione peroxidase enzymes while treatment with PER and PG combination shielded the mice from heightened kindling-associated oxidative stress. Overall, the findings of the present study illustrate that concurrent administration of PER and PG effectively hindered the process of epileptogenesis by protecting neuronal excitability and brain oxidative stress. The results predict the dominance of PER and PG combination over monotherapy which might serve as an effective novel combination to combat drug resistance and behavioral disorders in epileptic patients.


Subject(s)
Epilepsy , Kindling, Neurologic , Humans , Mice , Animals , Pentylenetetrazole/pharmacology , Pregabalin/adverse effects , Seizures/chemically induced , Seizures/drug therapy , Epilepsy/drug therapy , Oxidative Stress , Anticonvulsants/adverse effects
15.
Heliyon ; 9(11): e21234, 2023 Nov.
Article in English | MEDLINE | ID: mdl-38027790

ABSTRACT

Herbal products have been very popular in Pakistan for their curative significance against various disorders. Demaghi (DEMG) is a widely used herbal product claimed to own natural substances having neuroprotective potential. The current study aims to scientifically validate the chemical composition as well as its neuroprotective claims of this widely used herbal tonic. The commercially available Demaghi product was chemically characterized for its phytocomposition. The mice were treated with two doses of Demaghi (DEMG 50 mg and 100 mg/kg/day), and the effects of its prolonged exposure on animal anxiety, memory, and depression were noted through a series of behavioral tests in the AlCl3-induced memory deficient mice model. Besides that, dissected brains were biochemically analyzed for oxidative stress markers and acetylcholinesterase activity, as well as histopathological changes. The study outcomes showed that DEMG (100 mg/kg/day) has prominent anti-anxiety effects, memory-enhancing properties, and anti-depressants effects observed in the AlCl3-induced memory-deficient mice model. Biochemical assays also showed a greater decrease in oxidative stress of tested animals treated with 100 mg/kg/day of DEMG. The histopathological analysis also revealed that administration of DEMG reduced the AlCl3-induced toxicity. UPLC-MS results revealed the presence of many phytoconstituents, which showed to support cholinergic signaling in in-silico studies. The current research validates the neurological benefits of Demaghi for memory-boosting properties. The phytocompounds present in Demaghi exert neuroprotective effects, possibly by enhancing the cholinergic neurotransmission and combating the neurotoxin-induced oxidative stress.

16.
Cell Mol Life Sci ; 80(12): 357, 2023 Nov 11.
Article in English | MEDLINE | ID: mdl-37950757

ABSTRACT

Idiopathic Pulmonary Fibrosis (IPF) is a progressively fatal and incurable disease characterized by the loss of alveolar structures, increased epithelial-mesenchymal transition (EMT), and aberrant tissue repair. In this study, we investigated the role of Nuclear Factor I-B (NFIB), a transcription factor critical for lung development and maturation, in IPF. Using both human lung tissue samples from patients with IPF, and a mouse model of lung fibrosis induced by bleomycin, we showed that there was a significant reduction of NFIB both in the lungs of patients and mice with IPF. Furthermore, our in vitro experiments using cultured human lung cells demonstrated that the loss of NFIB was associated with the induction of EMT by transforming growth factor beta (TGF-ß). Knockdown of NFIB promoted EMT, while overexpression of NFIB suppressed EMT and attenuated the severity of bleomycin-induced lung fibrosis in mice. Mechanistically, we identified post-translational regulation of NFIB by miR-326, a miRNA with anti-fibrotic effects that is diminished in IPF. Specifically, we showed that miR-326 stabilized and increased the expression of NFIB through its 3'UTR target sites for Human antigen R (HuR). Moreover, treatment of mice with either NFIB plasmid or miR-326 reversed airway collagen deposition and fibrosis. In conclusion, our study emphasizes the critical role of NFIB in lung development and maturation, and its reduction in IPF leading to EMT and loss of alveolar structures. Our study highlights the potential of miR-326 as a therapeutic intervention for IPF. The schema shows the role of NFIB in maintaining the normal epithelial cell characteristics in the lungs and how its reduction leads to a shift towards mesenchymal cell-like features and pulmonary fibrosis. A In normal lungs, NFIB is expressed abundantly in the epithelial cells, which helps in maintaining their shape, cell polarity and adhesion molecules. However, when the lungs are exposed to factors that induce pulmonary fibrosis, such as bleomycin, or TGF-ß, the epithelial cells undergo epithelial to mesenchymal transition (EMT), which leads to a decrease in NFIB. B The mesenchymal cells that arise from EMT appear as spindle-shaped with loss of cell junctions, increased cell migration, loss of polarity and expression of markers associated with mesenchymal cells/fibroblasts. C We designed a therapeutic approach that involves exogenous administration of NFIB in the form of overexpression plasmid or microRNA-326. This therapeutic approach decreases the mesenchymal cell phenotype and restores the epithelial cell phenotype, thus preventing the development or progression of pulmonary fibrosis.


Subject(s)
Idiopathic Pulmonary Fibrosis , MicroRNAs , Humans , Mice , Animals , Epithelial-Mesenchymal Transition , Transforming Growth Factor beta/genetics , Transforming Growth Factor beta/metabolism , NFI Transcription Factors/metabolism , NFI Transcription Factors/pharmacology , Lung/metabolism , Idiopathic Pulmonary Fibrosis/chemically induced , Idiopathic Pulmonary Fibrosis/genetics , Idiopathic Pulmonary Fibrosis/metabolism , MicroRNAs/metabolism , Epithelial Cells/metabolism , Bleomycin/toxicity
17.
Biomolecules ; 13(11)2023 10 24.
Article in English | MEDLINE | ID: mdl-38002249

ABSTRACT

Facioscapulohumeral muscular dystrophy (FSHD) is the second most common muscular dystrophy in adults, and it is associated with local D4Z4 chromatin relaxation, mostly via the contraction of the D4Z4 macrosatellite repeat array on chromosome 4q35. In this study, we aimed to investigate the use of Optical Genome Mapping (OGM) as a diagnostic tool for testing FSHD cases from the UK and India and to compare OGM performance with that of traditional techniques such as linear gel (LGE) and Pulsed-field gel electrophoresis (PFGE) Southern blotting (SB). A total of 6 confirmed and 19 suspected FSHD samples were processed with LGE and PFGE, respectively. The same samples were run using a Saphyr Genome-Imaging Instrument (1-color), and the data were analysed using custom EnFocus FSHD analysis. OGM was able to confirm the diagnosis of FSHD1 in all FSHD1 cases positive for SB (n = 17), and D4Z4 sizing highly correlated with PFGE-SB (p < 0.001). OGM correctly identified cases with mosaicism for the repeat array contraction (n = 2) and with a duplication of the D4Z4 repeat array. OGM is a promising new technology able to unravel structural variants in the genome and seems to be a valid tool for diagnosing FSHD1.


Subject(s)
Muscular Dystrophy, Facioscapulohumeral , Adult , Humans , Muscular Dystrophy, Facioscapulohumeral/diagnosis , Muscular Dystrophy, Facioscapulohumeral/genetics , Electrophoresis, Gel, Pulsed-Field , Chromosome Mapping , India
18.
ACS Omega ; 8(37): 33794-33801, 2023 Sep 19.
Article in English | MEDLINE | ID: mdl-37744822

ABSTRACT

In this work, new compositions of Sr0.8Mg0.2(Sn1-xZrx)O3 0.00 ≤ x ≤ 0.06 ceramics are designed and synthesized by the conventional solid-state route. The influence of Zr doping on the phase, microstructural, optical, and dielectric properties is thoroughly investigated. The peaks (0 0 4) and (1 1 0) are observed to shift toward lower 2θ values, due to the variation of the ionic radius between Zr4+ and Sn4+. X-ray diffraction patterns reveal the orthorhombic structure with the space group Pbnm. Scanning electron microscopy images reveal the presence of pores and particles with a high degree of agglomeration. The functional groups and modes of vibration are determined by Fourier transform infrared spectroscopy of the prepared metal oxide samples. The existence of green emission of all the synthesized samples around 554.91 nm is identified by photoluminescence spectroscopy. The dielectric properties of the fabricated samples are measured by using an impedance analyzer. The values of the tangent loss and relative permittivity are found to decrease with increasing frequency.

19.
medRxiv ; 2023 Aug 22.
Article in English | MEDLINE | ID: mdl-37662332

ABSTRACT

Cervical cancer is caused by human papillomavirus (HPV) infection, has few approved targeted therapeutics, and is the most common cause of cancer death in low-resource countries. We characterized 19 cervical and four head and neck cell lines using long-read DNA and RNA sequencing and identified the HPV types, HPV integration sites, chromosomal alterations, and cancer driver mutations. Structural variation analysis revealed telomeric deletions associated with DNA inversions resulting from breakage-fusion-bridge (BFB) cycles. BFB is a common mechanism of chromosomal alterations in cancer, and this is one of the first analyses of these events using long-read sequencing. Analysis of the inversion sites revealed staggered ends consistent with exonuclease digestion of the DNA after breakage. Some BFB events are complex, involving inter- or intra-chromosomal insertions or rearrangements. None of the BFB breakpoints had telomere sequences added to resolve the dicentric chromosomes and only one BFB breakpoint showed chromothripsis. Five cell lines have a Chr11q BFB event, with YAP1/BIRC2/BIRC3 gene amplification. Indeed, YAP1 amplification is associated with a 10-year earlier age of diagnosis of cervical cancer and is three times more common in African American women. This suggests that cervical cancer patients with YAP1/BIRC2/BIRC3-amplification, especially those of African American ancestry, might benefit from targeted therapy. In summary, we uncovered new insights into the mechanisms and consequences of BFB cycles in cervical cancer using long-read sequencing.

20.
Molecules ; 28(16)2023 Aug 10.
Article in English | MEDLINE | ID: mdl-37630248

ABSTRACT

Cancer is one of the leading causes of death worldwide, and its incidence and mortality are increasing each year. Improved therapeutic strategies against cancer have progressed, but remain insufficient to invert this trend. Along with several other risk factors, abnormal genetic and epigenetic regulations play a critical role in the initiation of cellular transformation, as well as tumorigenesis. The epigenetic regulator UHRF1 (ubiquitin-like, containing PHD and RING finger domains 1) is a multidomain protein with oncogenic abilities overexpressed in most cancers. Through the coordination of its multiple domains and other epigenetic key players, UHRF1 regulates DNA methylation and histone modifications. This well-coordinated dialogue leads to the silencing of tumor-suppressor genes (TSGs) and facilitates tumor cells' resistance toward anticancer drugs, ultimately promoting apoptosis escape and uncontrolled proliferation. Several studies have shown that the downregulation of UHRF1 with natural compounds in tumor cells induces the reactivation of various TSGs, inhibits cell growth, and promotes apoptosis. In this review, we discuss the underlying mechanisms and the potential of various natural and synthetic compounds that can inhibit/minimize UHRF1's oncogenic activities and/or its expression.


Subject(s)
Carcinogenesis , Cell Transformation, Neoplastic , Humans , Apoptosis , Cell Cycle , Epigenesis, Genetic , CCAAT-Enhancer-Binding Proteins/genetics , Ubiquitin-Protein Ligases/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...