Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Plant Signal Behav ; 19(1): 2363126, 2024 Dec 31.
Article in English | MEDLINE | ID: mdl-38832593

ABSTRACT

Earthworms' coelomic fluid (CF) has been discovered to possess properties that promote plant development. In particular, the earthworm's coelomic fluid-associated bacteria (CFB) are the primary factor influencing the plants' response. To investigate this, we used bacteria isolated from the CF and selected based on different plant growth-promoting traits, in a mesocosm ecosystem that includes plants. This experiment aimed to assess their impact on the metabolism of plants growing under abiotic stress environments (alkaline soil and nitrogen (N), phosphate (P), and potassium (K) deficit) and compare the lipid profiles of plants under the various treatments. We used seven different bacterial species isolated from the CF of Aporrectodea molleri and as a plant model Zea mays L. For the metabolomic analysis method, we used gas chromatography-mass spectrometry lipidomic. After observing the metabolomic profiles, we found that a few molecular pathways are involved in how plants react to bacterial biostimulants. The bacterial isolates belonging to Pantoea vagans, Pseudomonas aeruginosa, Bacillus paramycoides, and Bacillus thuringiensis have led to a significant increase in synthesizing several metabolites belonging to various chemical categories. Contrary to predictions, abiotic stress did not cause a drop in the composition and concentration of lipids in plants treated with the CFB, demonstrating the rigidity of the protective mechanisms. The statistical analysis based on the Pearson method revealed a positive significant correlation between plant growth parameters (length of the aerial part, surface of the leaves, and biomass) and some metabolites belonging to fatty acids, carboxylic acids, benzene derivatives, and alkanes. Moreover, the standard metabolic components of all treatments in much higher concentrations during bacterial treatments than the control treatment suggests that the bacteria have stimulated the overexpression of these metabolic components. According to these results, we could assume that plants treated with CFB exhibit an adaptability of abiotic stress defense mechanisms, which may be attributed to the upregulation of genes involved in lipid biosynthesis pathways.


Subject(s)
Stress, Physiological , Bacteria/metabolism , Animals , Zea mays/microbiology , Zea mays/metabolism , Oligochaeta/metabolism , Oligochaeta/microbiology
2.
Environ Res ; 214(Pt 2): 113859, 2022 11.
Article in English | MEDLINE | ID: mdl-35841968

ABSTRACT

The present study was focused on the removal of Reactive Black 5 (RB5) from aqueous solution using pre treated Aspergillus flavus as a biosorbent. Pre-treatment of fungal biomass with 0.1 M sodium hydroxide facilitated the removal of dye effectively when compared to untreated fungal biomass. Optimum biosorption conditions for RB5 removal was determined as a function of dye concentration (50-400 mg/L), biosorbent concentration (100-500 mg/L), incubation time (1-7hrs), pH (3-8) and temperature (20-50 °C). At the optimum conditions, the maximum removal efficiency of RB5 achieved by NaOH pretreated A. flavus was 91%. The dye removal was studied kinetically and it obeys the pseudo-second order model and the experimental equilibrium data well fitted the Langmuir isotherm indicating monolayer adsorption of dye molecules on the biosorbent. The thermodynamic parameters such as a change in free energy (ΔG), enthalpy (ΔH) and entropy (ΔS) were calculated and negative values of ΔG suggested that the dye removal process was spontaneous at all temperatures. Furthermore, the values of ΔH revealed that the adsorption process was endothermic. Recovery of RB5 from the fungal biomass was effective using 0.1 M Na2CO3 as an eluent. The interaction of adsorbate with biosorbent was analyzed using UV-Vis and FT-IR spectroscopy, SEM and XRD analyses. Phytotoxicity and microbial toxicity studies revealed the non-toxic nature of the treated dye solution. Hence, the fungal biomass pretreated with NaOH was efficient in decolorizing RB5 as well as composite raw industrial effluent generated from dyeing industries.


Subject(s)
Aspergillus flavus , Water Pollutants, Chemical , Adsorption , Biomass , Coloring Agents , Hydrogen-Ion Concentration , Kinetics , Naphthalenesulfonates , Sodium Hydroxide/chemistry , Spectroscopy, Fourier Transform Infrared , Thermodynamics , Water Pollutants, Chemical/toxicity
3.
Ecotoxicol Environ Saf ; 227: 112891, 2021 Dec 20.
Article in English | MEDLINE | ID: mdl-34649139

ABSTRACT

Vermicomposting of Biomedical waste ash (BA) by the earthworm Eisenia fetida was studied with cow dung (CD) as nutrient medium. For 105 days, experiment was carried out in seven vermireactors containing varying ratios of BA and CD. Earthworm activity significantly reduced the pH (8.61-7.24), Electrical conductivity (EC) (4.1-1.62), Total organic carbon (TOC) (38.6-14.92), and Carbon and nitrogen (C/N ratios) (145.4-8.2) of all BA ratios. Levels of Total kjeldahl nitrogen (TKN) (0.26-1.82), Total available phosphorus (TAP) (0.22-0.64), Total potassium (TK) (2.05-12.08), and Total sodium (TNa) (47.53-92.26) were found to be increasing in the postvermicompost mixture. Although heavy metals content decreased from initial to final, it becomes below the permissible limits in the end product. The results showed that earthworm growth and fecundity were best in vermireactors containing 10-25% of BA. The best reproduction and growth of earthworms, demonstrate the vermicomposting's ability to manage hazardous solid wastes like BA. Use of vermitechnology to manage BA has not been performed yet in any kind of the research. Finally, it was determined that vermicomposting can be incorporated into overall plan for BA management. Thus nutrient-rich, detoxified, and physiochemically stable product may be used safely in agricultural processes.


Subject(s)
Metals, Heavy , Oligochaeta , Animals , Cattle , Ecosystem , Female , Manure , Nutrients , Soil
4.
Bioresour Technol ; 325: 124695, 2021 Apr.
Article in English | MEDLINE | ID: mdl-33465648

ABSTRACT

Elimination of antibiotic resistance genes (ARGs) from excess activated sludge (EAS) mixed for effective treatment of different fruit and vegetable waste (FVW) by using a novel vermireactor consisted of substrate and bed compartments was investigated. ARGs (tet G, tet M and sul 1) and mobile genetic element gene (intl 1) were targeted and, through quantitative analysis of their abundances in both the compartments and the fresh cast of earthworms, significant reductions in substrate compartments were confirmed for the treatments for FVW added with EAS and EAS alone even if the reduction extents differed among the types of FVW. Apparent reductions were not found in the bed compartment where the final products accumulated. For the fresh cast, the relative abundances of ARGs and intl 1 against to the total bacterial 16S rDNA decreased markedly. The present study provided an insight for proper controlling of ARGs during vermicomposting of FVW and EAS.


Subject(s)
Sewage , Vegetables , Animals , Anti-Bacterial Agents/pharmacology , Drug Resistance, Microbial/genetics , Fruit , Genes, Bacterial/genetics , Wastewater
SELECTION OF CITATIONS
SEARCH DETAIL
...