Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Enzyme Microb Technol ; 174: 110369, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38101243

ABSTRACT

The entrance of some toxic and hazardous chemical agents such as antibiotics, pesticides, and herbicides into the environment can cause various problems to human health and the environment. In recent years, researchers have considered the use of electrostimulation in the processes of microbial metabolism and biological systems for the treatment of pollutants in the environment. Although several electrostimulation reports have been presented for pollutant removal, little attention has been paid to alternative current (AC) biostimulation. This study presents a systematic review of microbial electrostimulation using bioelectrochemical systems supplied with AC. The utilization of alternating current bioelectrochemical systems (ACBESs) has some advantages such as the provide of appropriate active biofilms in the electrodes due to the cyclical nature of the current and energy transfer in an appropriate manner on the electrode surfaces. Moreover, the ACBESs can reduce hydraulic time (HRT) under optimal conditions and reduce the cost of converting electricity using AC. In microbial electrostimulation, amplitude (AMPL), waveform, C/N, and current have a significant effect on increasing the removal efficiency of the pollutants. The obtained results of the meta-analysis illustrated that various pollutants such as phenol, antibiotics, and nitrate have been removed in an acceptable range of 96% using the ACBESs. Therefore, microbial electrostimulation using AC is a promising technology for the decomposition and removal of various pollutants. Moreover, the ACBESs could provide new opportunities for promoting various bioelectrochemical systems (BESs) for the production of hydrogen or methane.


Subject(s)
Bioelectric Energy Sources , Environmental Restoration and Remediation , Humans , Electricity , Electrodes , Environmental Pollutants , Environmental Pollution
2.
Environ Sci Pollut Res Int ; 30(27): 70897-70917, 2023 Jun.
Article in English | MEDLINE | ID: mdl-37160520

ABSTRACT

This study examined the modelling and optimisation of the electrocoagulation-flocculation (ECF) recovery of aquaculture effluent (AQE) using aluminium electrodes. The response surface methodology (RSM), artificial neural network (ANN), and adaptive neuro-fuzzy inference system (ANFIS) were used for the modelling, while the optimisation tools were the numerical RSM and genetic algorithm (GA). Furthermore, the kinetics of the ECF process was studied to provide insight into the mechanism governing the ECF of AQE. The experimental design was performed using the central composite design (CCD) of the RSM. The ANFIS modelling was accomplished via the Grid Partition (GP) of the data set, while the ANN used the multi-layer perceptron (MLP) based feed-forward system. Statistically, the prediction accuracy of the models followed the order: ANFIS (R2: 0.9990), ANN (R2: 0.9807), and RSM (R2: 0.9790). The process optimisation gave optimal turbidity (TD) removal efficiencies of 98.98, 97.81, and 96.01% for ANFIS-GA, ANN-GA, and RSM optimisation techniques, respectively. The ANFIS-GA gave the best optimization result at optimum conditions of pH 4, current intensity (3 A), electrolysis time (7.2 min), settling time (23 min), and temperature (43.8 °C). In the kinetics study, the experimental data was analysed using pseudo-first-order (0.8787), pseudo-second-order (0.9395), and Elovich (R2: 0.9979) kinetic models; the Elovich model gave the best correlation with the experimental data showing that the process is governed by electrostatic interaction mechanism. This study effectively demonstrated that ECF recovery of AQE can effectively be modelled using RSM, ANN, and ANFIS and be optimised using RSM, ANN-GA, and ANFIS-GA techniques, and the order of performance is ANFIS > ANN > RSM and ANFIS-GA > ANN-GA > RSM, respectively.


Subject(s)
Artificial Intelligence , Neural Networks, Computer , Flocculation , Electrocoagulation , Electrolysis
3.
J Food Sci Technol ; 59(12): 4880-4888, 2022 Dec.
Article in English | MEDLINE | ID: mdl-36276543

ABSTRACT

The aim of the study was to investigate biogenic amine production in different types of cooked protein foods. The food samples were incubated at varying temperatures (4, 37 and 55 °C) on different microbiological media for 48, 72 and 180 h. Resulting bacteria were isolated and characterized using cultural, biochemical and molecular methods, further screened for production of biogenic amines in decarboxylase broth media supplemented with 0.4% of histidine, tyrosine, lysine and ornithine. The samples were incubated at 25 °C for 48 h and the biogenic amine concentration in each food sample determined by means of HPLC. There was a high prevalence of the isolates among the food samples. All the isolates except Klebsiella sp. and Pseudomonas sp. were positive for decarboxylase activity indicating 84.6% of the isolates capable of biogenic amine production. The amine concentration varied among the types of food and methods of cooking. Histamine was detected in 41.67% of the inoculated food samples (9.2 ± 1.2-100.95 ± 0.1 µg/g) while putrescine was the least detected (41.67%) in the inoculated food sample (7.7 ± 0.1-8.8 ± 0.2 µg/g). Cadaverine and histamine were detected in 16.4% (2.6 ± 0.2-49.9 ± 0.9 µg/g) and 7.5% (1.4 ± 0.1-20.4 ± 0.3 µg/g) of the foods, respectively. Microbial contamination of the cooked protein foods led to high levels of biogenic amines irrespective of the cooking methodology adopted and type of foods investigated. Supplementary Information: The online version contains supplementary material available at 10.1007/s13197-022-05576-0.

4.
Environ Sci Pollut Res Int ; 29(39): 58628-58647, 2022 Aug.
Article in English | MEDLINE | ID: mdl-35794320

ABSTRACT

This current study review provides a brief review of a natural bee product known as propolis and its relevance toward combating SARS-CoV viruses. Propolis has been utilized in medicinal products for centuries due to its excellent biological properties. These include anti-oxidant, immunomodulatory, anti-inflammatory, anti-viral, anti-fungal, and bactericidal activities. Furthermore, studies on molecular simulations show that flavonoids in propolis may reduce viral replication. While further research is needed to validate this theory, it has been observed that COVID-19 patients receiving propolis show earlier viral clearance, enhanced symptom recovery, quicker discharge from hospitals, and a reduced mortality rate relative to other patients. As a result, it appears that propolis could probably be useful in the treatment of SARS-CoV-2-infected patients. Therefore, this review sought to explore the natural properties of propolis and further evaluated past studies that investigated propolis as an alternative product for the treatment of COVID-19 symptoms. In addition, the review also highlights the possible mode of propolis action as well as molecular simulations of propolis compounds that may interact with the SARS-CoV-2 virus. The activity of propolis compounds in decreasing the impact of COVID-19-related comorbidities, the possible roles of such compounds as COVID-19 vaccine adjuvants, and the use of nutraceuticals in COVID-19 treatment, instead of pharmaceuticals, has also been discussed.


Subject(s)
Biological Products , COVID-19 Drug Treatment , Propolis , Anti-Inflammatory Agents , Antiviral Agents/pharmacology , COVID-19 Vaccines , Humans , Propolis/pharmacology , SARS-CoV-2
SELECTION OF CITATIONS
SEARCH DETAIL
...