Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
2.
J Photochem Photobiol A Chem ; 419: 113453, 2021 Oct 01.
Article in English | MEDLINE | ID: mdl-34305356

ABSTRACT

With the outbreak of coronavirus pandemic the use of Hydroxychloroquine increased. These compounds have harmful effects on the environment, such as generation of antibiotic-resistant bacteria; therefore, their degradation has been considered as one of the environmental challenges. The purpose of this research is to synthesize heterogeneous structure of TiO2/ß-Bi2O3 by hydrothermal method for solar degradation of Hydroxychloroquine. Then, the accurate characteristics of the synthesized samples were investigated by XRD, FESEM, TEM, XPS, UV-vis (DRS), and BET surface analyzer. Photocatalytic degradation of Hydroxychloroquine was studied under sunlight, and it was found that the visible light absorption of TiO2 photocatalyst by mixing ß-Bi2O3 nanoparticles was greatly increased and 91.89% of the degradation was obtained in 120 min of photocatalytic reaction. This improvement can be attributed to the increased specific surface area, efficient charge transfer, and reduced electron-hole recombination with the ß-Bi2O3 compound. Kinetic studies also reacted to follow pseudo-first-order kinetics. Also, demonstrated high stability and recyclability for nanoparticles, so that after 6 cycles of using the catalyst in take, 70.59% degradation was performed. According to the results, the excellent photocatalytic degradation activity demonstrated by the TiO2/ß-Bi2O3, therefore, it is a potential candidate for the process of removing other organic contaminants from aqueous solutions.

3.
Nanomaterials (Basel) ; 11(2)2021 Jan 24.
Article in English | MEDLINE | ID: mdl-33498950

ABSTRACT

This study aimed to synthesize a new magnetic photocatalytic nanosystem composed of Ag-CuFe2O4@WO3 and to investigate its photodegradation efficiency for two drug pollutants of Gemfibrozil (GEM) and Tamoxifen (TAM) under Ultraviolet (UV) light irradiation. In this regard, the effect of pH, catalyst dosage, and drug concentration was thoroughly determined. The largest photodegradation level for GEM (81%) and TAM (83%) was achieved at pH 5, a photocatalyst dosage of 0.2 g/L, drug concentration of 5 mg/L, and contact time of 150 min. The drug photodegradation process followed the pseudo first-order kinetic model. In addition to the photodegradation effect, the nanocomposites were proved to be efficient in terms of antibacterial activity, proportional to the Ag doping level. The Ag-CuFe2O4@WO3 nanocomposite exhibited a stable, efficient performance without an obvious catalytic loss after five successive cycles. Taken together, the developed magnetic photocatalyst is able to simultaneously disinfect wastewater streams and to degrade pharmaceutical contaminants and thus shows a promising potential for purification of multi-contaminant water systems.

4.
J Environ Manage ; 271: 110964, 2020 Oct 01.
Article in English | MEDLINE | ID: mdl-32778273

ABSTRACT

In the last decades, the use of magnetic nanocomposites as a catalyst was considered for removal of organic pollutants due to its easy separation. Therefore, initially, TiO2@ZnFe2O4/Pd nanocomposite was prepared and then used in the photodegradation of diclofenac under direct solar irradiation in the batch and continuous systems. The structure, morphology and other specifications of produced nanocatalyst were determined via XRD, VSM, FESEM/EDX, FTIR, GTA, UV-Vis, Zeta potential, XPS and ICP-OES. The effective factors on diclofenac removal via nanophotocatalyst viz. pH, catalyst concentration, initial concentration of diclofenac, and flow rate and column length on diclofenac photodegradation were studied. Based on the results, the optimal rate for pH, catalyst concentration, and initial concentration of diclofenac was 4, 0.03 g/l and 10 mg/l respectively. Pd-coated TiO2@ZnFe2O4 magnetic photocatalyst had higher photocatalytic activity in diclofenac photodegradation in relation to ZnFe2O4 and TiO2@ZnFe2O4 under solar light irradiation. The findings showed that after five recycles, the photocatalytic efficiency did not show much reduction i.e. the removal efficiency from 86.1% in the first cycle reduced only to 71.38% in the last cycle. Likewise, in this study, with flow rate reduction and column length increase diclofenac degradation rate increased.


Subject(s)
Environmental Pollutants , Nanocomposites , Pharmaceutical Preparations , Catalysis , Light , Magnetic Phenomena , Titanium
5.
RSC Adv ; 10(50): 29808-29820, 2020 Aug 10.
Article in English | MEDLINE | ID: mdl-35518266

ABSTRACT

In this study, for the first time, the Ca/TiO2/NH2-MIL-125 nanocomposite photocatalyst was synthesized for the purpose of photodegradation of Methyl Orange (MO) and Rhodamine B (RhB) dyes under visible light irradiation. The structural and chemical properties of the nanocomposite photocatalyst were characterized through FTIR, XRD, TGA, PL, XPS, ICP-OES and UV-DRS. For the photodegradation efficiency analysis, the effect of pH (3, 5, 7, 9, and 11), photocatalyst dosage (0.1, 0.2, 0.4, 0.6, and 0.8 g L-1), dye concentration (1-40 mg L-1), and contact time (10-120 min) was precisely evaluated. The largest photodegradation efficiency for RhB and MO dye models was 82.87% and 86.22%, respectively, that was obtained under optimal conditions in terms of pH and photocatalyst dosage and for Ca(30%)/TiO2/NH2-MIL-125. The photodegradation process of the dyes complied well with the first-order kinetic model. Moreover, the nanocomposite photocatalyst showed consistent photodegradation efficiency and after 6 successive cycles with fresh dye solutions, it could still perform comparably well. Taken together, Ca/TiO2/NH2-MIL-125 photocatalyst is able to show a high photodegradation efficiency for dye pollutants and optimum stability and reusability.

SELECTION OF CITATIONS
SEARCH DETAIL
...