Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Phys Med ; 121: 103336, 2024 May.
Article in English | MEDLINE | ID: mdl-38626637

ABSTRACT

PURPOSE: We aimed to investigate whether a clinically feasible dual time-point (DTP) approach can accurately estimate the metabolic uptake rate constant (Ki) and to explore reliable acquisition times through simulations and clinical assessment considering patient comfort and quantification accuracy. METHODS: We simulated uptake kinetics in different tumors for four sets of DTP PET images within the routine clinical static acquisition at 60-min post-injection (p.i.). We determined Ki for a total of 81 lesions. Ki quantification from full dynamic PET data (Patlak-Ki) and Ki from DTP (DTP-Ki) were compared. In addition, we scaled a population-based input function (PBIFscl) with the image-derived blood pool activity sampled at different time points to assess the best scaling time-point for Ki quantifications in the simulation data. RESULTS: In the simulation study, Ki estimated using DTP via (30,60-min), (30,90-min), (60,90-min), and (60,120-min) samples showed strong correlations (r ≥ 0.944, P < 0.0001) with the true value of Ki. The DTP results with the PBIFscl at 60-min time-point in (30,60-min), (60,90-min), and (60,120-min) were linearly related to the true Ki with a slope of 1.037, 1.008, 1.013 and intercept of -6 × 10-4, 2 × 10-5, 5 × 10-5, respectively. In a clinical study, strong correlations (r ≥ 0.833, P < 0.0001) were observed between Patlak-Ki and DTP-Ki. The Patlak-derived mean values of Ki, tumor-to-background-ratio, signal-to-noise-ratio, and contrast-to-noise-ratio were linearly correlated with the DTP method. CONCLUSIONS: Besides calculating the retention index as a commonly used quantification parameter inDTP imaging,our DTP method can accurately estimate Ki.


Subject(s)
Feasibility Studies , Fluorodeoxyglucose F18 , Positron-Emission Tomography , Humans , Fluorodeoxyglucose F18/metabolism , Positron-Emission Tomography/methods , Time Factors , Image Processing, Computer-Assisted/methods , Kinetics , Neoplasms/diagnostic imaging , Neoplasms/metabolism , Biological Transport , Male , Female , Middle Aged , Aged , Computer Simulation
2.
Radiol Phys Technol ; 17(1): 124-134, 2024 Mar.
Article in English | MEDLINE | ID: mdl-37980315

ABSTRACT

This study aimed to assist doctors in detecting early-stage lung cancer. To achieve this, a hierarchical system that can detect nodules in the lungs using computed tomography (CT) images was developed. In the initial phase, a preexisting model (YOLOv5s) was used to detect lung nodules. A 0.3 confidence threshold was established for identifying nodules in this phase to enhance the model's sensitivity. The primary objective of the hierarchical model was to locate and categorize all lung nodules while minimizing the false-negative rate. Following the analysis of the results from the first phase, a novel 3D convolutional neural network (CNN) classifier was developed to examine and categorize the potential nodules detected by the YOLOv5s model. The objective was to create a detection framework characterized by an extremely low false positive rate and high accuracy. The Lung Nodule Analysis 2016 (LUNA 16) dataset was used to evaluate the effectiveness of this framework. This dataset comprises 888 CT scans that include the positions of 1186 nodules and 400,000 non-nodular regions in the lungs. The YOLOv5s technique yielded numerous incorrect detections owing to its low confidence level. Nevertheless, the addition of a 3D classification system significantly enhanced the precision of nodule identification. By integrating the outcomes of the YOLOv5s approach using a 30% confidence limit and the 3D CNN classification model, the overall system achieved 98.4% nodule detection accuracy and an area under the curve of 98.9%. Despite producing some false negatives and false positives, the suggested method for identifying lung nodules from CT scans is promising as a valuable aid in decision-making for nodule detection.


Subject(s)
Lung Neoplasms , Solitary Pulmonary Nodule , Humans , Lung Neoplasms/diagnostic imaging , Solitary Pulmonary Nodule/diagnostic imaging , Tomography, X-Ray Computed/methods , Lung/diagnostic imaging , Neural Networks, Computer , Radiographic Image Interpretation, Computer-Assisted/methods
3.
EJNMMI Res ; 13(1): 70, 2023 Jul 26.
Article in English | MEDLINE | ID: mdl-37493872

ABSTRACT

BACKGROUND: To investigate the use of dynamic radiomics features derived from dual-time-point (DTP-feature) [18F]FDG PET metabolic uptake rate Ki parametric maps to develop a predictive model for response to chemotherapy in lymphoma patients. METHODS: We analyzed 126 lesions from 45 lymphoma patients (responding n = 75 and non-responding n = 51) treated with chemotherapy from two different centers. Static and DTP radiomics features were extracted from baseline static PET images and DTP Ki parametric maps. Spearman's rank correlations were calculated between static and DTP features to identify features with potential additional information. We first employed univariate analysis to determine correlations between individual features, and subsequently utilized multivariate analysis to derive predictive models utilizing DTP and static radiomics features before and after ComBat harmonization. For multivariate modeling, we utilized both the minimum redundancy maximum relevance feature selection technique and the XGBoost classifier. To evaluate our model, we partitioned the patient datasets into training/validation and testing sets using an 80/20% split. Different metrics for classification including area under the curve (AUC), sensitivity (SEN), specificity (SPE), and accuracy (ACC) were reported in test sets. RESULTS: Via Spearman's rank correlations, there was negligible to moderate correlation between 32 out of 65 DTP features and some static features (ρ < 0.7); all the other 33 features showed high correlations (ρ ≥ 0.7). In univariate modeling, no significant difference between AUC of DTP and static features was observed. GLRLM_RLNU from static features demonstrated a strong correlation (AUC = 0.75, p value = 0.0001, q value = 0.0007) with therapy response. The most predictive DTP features were GLCM_Energy, GLCM_Entropy, and Uniformity, each with AUC = 0.73, p value = 0.0001, and q value < 0.0005. In multivariate analysis, the mean ranges of AUCs increased following harmonization. Use of harmonization plus combining DTP and static features was shown to provide significantly improved predictions (AUC = 0.97 ± 0.02, accuracy = 0.89 ± 0.05, sensitivity = 0.92 ± 0.09, and specificity = 0.88 ± 0.05). All models depicted significant performance in terms of AUC, ACC, SEN, and SPE (p < 0.05, Mann-Whitney test). CONCLUSIONS: Our results demonstrate significant value in harmonization of radiomics features as well as combining DTP and static radiomics models for predicting response to chemotherapy in lymphoma patients.

SELECTION OF CITATIONS
SEARCH DETAIL
...