Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Language
Publication year range
1.
Mini Rev Med Chem ; 2023 Sep 14.
Article in English | MEDLINE | ID: mdl-37711004

ABSTRACT

Ebselen is a selenoorganic chiral compound with antioxidant properties comparable to glutathione peroxidase. It is also known as 2-phenyl-1,2-benzisoselenazol-3(2H)-one. In studies examining its numerous pharmacological activities, including antioxidant, anticancer, antiviral, and anti-Alzheimer's, ebselen has demonstrated promising results. This review's primary objective was to emphasize the numerous synthesis pathways of ebselen and their efficacy in fighting cancer. The data were collected from multiple sources, including Scopus, PubMed, Google Scholar, Web of Science, and Publons. The starting reagents for the synthesis of ebselen are 2-aminobenzoic acid and N-phenyl benzamide. It was discovered that ebselen has the ability to initiate apoptosis in malignant cells and prevent the formation of new cancer cells by scavenging free radicals. In addition, ebselen increases tumor cell susceptibility to apoptosis by inhibiting TNF-α mediated NF-jB activation. Ebselen can inhibit both doxorubicin and daunorubicin-induced cardiotoxicity. Allopurinol and ebselen administered orally can be used to suppress renal ototoxicity and nephrotoxicity. Due to excessive administration, diclofenac can induce malignancy of the gastrointestinal tract, which ebselen can effectively suppress. Recent research has demonstrated ebselen to inhibit viral function by binding to cysteine-containing catalytic domains of various viral proteases. It was discovered that ebselen could inhibit the catalytic dyad function of Mpro by forming an irreversible covalent bond between Se and Cys145, thereby altering protease function and inhibiting SARS-CoV-2. Ebselen may also inhibit the activation of endosomal NADPH oxidase of vascular endothelial cells, which is believed to be required for thrombotic complications in COVID-19. In this review, we have included various studies conducted on the anticancer effect of ebselen as well as its inhibition of SARS-CoV-2.

2.
Int J Biol Macromol ; 240: 124475, 2023 Jun 15.
Article in English | MEDLINE | ID: mdl-37076065

ABSTRACT

Assam soft rice starch (ASRS) and Citric acid-esterified Assam soft rice starch (c-ASRS) were studied extensively. FTIR, CHN, DSC, XRD, SEM, TEM and optical microscope studies were performed for native and modified starches. Powder rearrangements, cohesiveness and flowability were studied by the Kawakita plot. Moisture and ash content was around 9 % and 0.5 %. In vitro digestibility of ASRS and c-ASRS produced functional RS. Paracetamol tablets were prepared using ASRS and c-ASRS as granulating-disintegrating agents through wet granulation methods. The prepared tablets' physical properties, disintegrant properties, in vitro dissolution and dissolution efficiency (DE) were performed. The average particle size was obtained at 6.59 ± 0.355 µm and 8.15 ± 0.168 µm for ASRS and c-ASRS, respectively. All the results were statistically significant at p < 0.05, p < 0.01 and p < 0.001. The amylose content was 6.78 %, classifying it as a low amylose type of starch. The disintegration time was reduced with the increasing concentration of ASRS and c-ASRS and facilitated the immediate release of the model drug from the tablet compact to improve its bioavailability. Therefore, the current investigation concludes that ASRS and c-ASRS can be used as novel and functional materials in pharmaceutical industries due to their unique physicochemical attributes. HYPOTHESIS: The central hypothesis of the current work was to develop citrated starch through a one-step reactive extrusion method and investigate its disintegrants property for pharmaceutical tablets. Extrusion is a continuous, simple, high-speed, low-cost, producing very limited wastewater and gas. Characterization was done through different instrumental techniques to confirm successful esterification. The flow properties were evaluated, and tablets were prepared at a different level of ASRS and c-ASRS (disintegrating agent), followed by the evaluation of tablets to confirm the model drug's dissolution and disintegration efficiency. Finally, in vitro digestibility of both ASRS and c-ASRS was analyzed to establish their potential nutritional benefits.


Subject(s)
Oryza , Resistant Starch , Amylose , Citric Acid , Chemistry, Pharmaceutical , Solubility , Starch/chemistry , Excipients/chemistry , Tablets/chemistry
3.
Int J Biol Macromol ; 227: 424-436, 2023 Feb 01.
Article in English | MEDLINE | ID: mdl-36549610

ABSTRACT

The current work was designed to study the starch's physicochemical attributes, tablet disintegration and dissolution efficiency and its derivatives obtained from the glutinous Assam bora rice (G-ABR) variety of Assam, Northeast India. Starch was isolated by a simple protein denaturation method, and a starch derivative was prepared through citric acid modification. G-ABRS and citrated G-ABRS were characterized through FTIR, DSC, XRD and SEM. The rate of consolidation, consolidation index, angle of internal friction, packing rearrangement and cohesive properties were determined to investigate their applications as functional excipients in pharmaceutical industries. G-ABRS and citrated G-ABRS exhibited better packing rearrangement and cohesive properties than standard corn starch. Furthermore, immediate release of API from the tablet compact was observed when the starch concentration increased from 1 to 5 %, indicating facilitation of the tablet compact disintegration. Therefore, G-ABRS and citrated G-ABRS are potentially functional and sustainable materials for pharmaceutical industries.


Subject(s)
Oryza , Oryza/chemistry , Solubility , Citric Acid , Starch/chemistry , Tablets/chemistry
4.
Int J Biol Macromol ; 206: 681-698, 2022 May 01.
Article in English | MEDLINE | ID: mdl-35247430

ABSTRACT

Currently, research on natural products is facing challenging future in various aspects. A large group of natural polysaccharides such as ß-glucan, cellulose, hemicellulose, chitin, pectin, agaropectin, heteroglycans, lignins, hydrocolloids, homopolysaccharides, heteropolysaccharides were studied extensively for their various therapeutical potential. Several research works have already demonstrated those polysaccharides has tremendous health benefits, and found to exhibit anticancer, antiviral, immunomodulatory, antimicrobial, anticoagulant, anti-inflammatory, antidiabetic, antioxidant and antitumor activities. Different mushroom, plant, fungus, algae, vegetables, microalgae etc. are some important source of several polysaccharide macromolecules such as glucans, ulvan A, ulvan B, fucoidan, rhamnan sulfate, laminarin sulfate, agar, alginate, heteroglycans. Earlier research work demonstrated that natural polysaccharides have the highest ability to carry biological properties along with some biopolymers like as proteins and nucleic acids due to their structural variability. The preventive effect of these biomacromolecules was extensively studied, especially their beneficial effect on chronic metabolic conditions like dyslipidemia and related disorders. Dyslipidemia is a serious metabolic disorder associated with coronary heart disease, coronary artery diseases, hypercholesterolemia, atherosclerosis, etc. Dietary natural polysaccharides could play an important role in the management and prevention of dyslipidemia. Polysaccharides from natural sources mainly sulfated polysaccharides exhibited predominant lipid-lowering and cholesterol-lowering activities through different mechanisms. Polysaccharides isolated from different edible plants, vegetables, plant, algae, mushroom with higher biological activities, particularly hypolipidemic activity were highlighted in this paper, in a way for their futuristic therapeutic application. This review aims to comprehensively discuss overall advances in hypolipidemic activity of polysaccharides, including their sources, structural characteristic and chemistry, biological activity and their probable mode of action.


Subject(s)
Agaricales , Hyperlipidemias , Glucans/chemistry , Humans , Polysaccharides/chemistry , Polysaccharides/pharmacology , Polysaccharides/therapeutic use , Sulfates/chemistry
5.
Expert Opin Drug Deliv ; 13(3): 315-24, 2016.
Article in English | MEDLINE | ID: mdl-26559395

ABSTRACT

OBJECTIVES: The purpose of the study was to develop a floating matrix tablet of Nicorandil using blends of hydrophilic cellulose and pH-independent acrylic polymer to improve the therapeutic effectiveness of the drug in cardiovascular disease. METHODS: Nicorandil tablets were prepared by direct compression and evaluated for drug-excipients compatibility, in-vitro buoyancy and in-vivo γ-scintigraphy study. The selected formulation (FT5) was also evaluated for stability study and the in-vivo absorption in rabbits to compare the pharmacokinetic parameters with the commercially available immediate release tablet of Nicorandil. RESULTS: DSC and FT-IR studies confirmed the absence of incompatibility and were found stable at refrigerator temperature (2-8°C) and at 25ºC/60% RH. The in-vivo γ-scintigraphy studies revealed that the system was floated for a period of 6 -7 h in the stomach and in-vivo absorption study showed a significant difference (p < 0.05) in the pharmacokinetic parameters (AUC increased by 3 fold and MRT by 2.5 fold) as compared to the marketed formulation. CONCLUSION: In conclusion, the developed Nicorandil floating matrix tablet improved the pharmacokinetics parameters (AUC and MRT) in rabbit plasma with expected lowering in side effects potential.


Subject(s)
Cellulose/chemistry , Excipients/chemistry , Nicorandil/administration & dosage , Polymers/chemistry , Animals , Chemistry, Pharmaceutical , Delayed-Action Preparations , Hydrophobic and Hydrophilic Interactions , Male , Nicorandil/chemistry , Rabbits , Spectroscopy, Fourier Transform Infrared , Tablets/pharmacokinetics
6.
Braz. j. pharm. sci ; 51(2): 467-477, Apr.-June 2015. tab, ilus
Article in English | LILACS | ID: lil-755058

ABSTRACT

In this study, we prepared atorvastatin calcium (AVST) loaded chitosan nanoparticles to improve the oral bioavailability of the drug. Nanoparticles were prepared by solvent evaporation technique and evaluated for its particle size, entrapment efficiency, zeta potential, in vitro release and surface morphology by scanning electron microscopy (SEM). In addition, the pharmacokinetics of AVST from the optimized formulation (FT5) was compared with marketed immediate release formulation (Atorva(r)) in rabbits. Particle size of prepared nanoparticles was ranged between 179.3 ± 7.12 to 256.8 ± 8.24 nm with a low polydispersity index (PI) value. Zeta potential study showed that the particles are stable with positive values between 13.03 ± 0.32 to 46.90 ± 0.49 mV. FT-IR studies confirmed the absence of incompatibility of AVST with excipient used in the formulations. In vitro release study showed that the drug release was sustained for 48 h. Results of pharmacokinetics study showed significant changes in the pharmacokinetic parameter (2.2 fold increase in AUC) of the optimized formulation as compared to marketed formulation (Atorva(r)). Thus, the developed nanoparticles evidenced the improvement of oral bioavailability of AVST in rabbit model...


No presente estudo, preparamos nanopartículas de quitosana com atorvastatina cálcica (AVST) para melhorar a biodisponibilidade oral do fármaco. As nanopartículas foram preparadas pela técnica de evaporação de solvente, avaliando-se a granulometria, a eficiência de encapsulamento, o potencial zeta, a liberação in vitroe a morfologia da superfície, por meio da microscopia eletrônica de varredura (MEV). Além disso, a farmacocinética da formulação otimizada de AVST (FT5) foi comparada com a formulação comercial, de liberação imediata, comercializada (Atorva(r)), em coelhos. O tamanho das das nanopartículas variou na faixa de 179,3 a 256,8 ± 7,12 ± 8,24 nm, com baixo índice polidispersibilidade (PI). O estudo do potencial Zeta mostrou que as partículas são estáveis, com valores positivos entre 13,03 ± 0,32 a 46,90 ± 0,49 mV. Os estudos de FT-IR confirmaram a ausência de incompatibilidade de AVST com o excipiente utilizado nas formulações. O estudo de liberação in vitro mostrou que liberação sustentada do fármaco por 48 horas. Os resultados do estudo farmacocinético mostraram alterações significativas nos parâmetros (aumento de 2,2 vezes na ASC) da formulação otimizada em relação à comercializada (Atorva(r) ). Assim, o desenvolvimento de nanopartículas evidenciou a melhora da biodisponibilidade oral de AVST em coelhos...


Subject(s)
Animals , Rabbits , Calcium Compounds/pharmacology , Drug Compounding , Pharmacology, Clinical/methods , Chemistry, Pharmaceutical
SELECTION OF CITATIONS
SEARCH DETAIL
...