Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Appl Opt ; 62(15): 4097-4101, 2023 May 20.
Article in English | MEDLINE | ID: mdl-37706722

ABSTRACT

Terahertz time-domain spectroscopy (THz-TDS) is a powerful technique that enables the characterization of a large range of bulk materials, devices, and products. Although this technique has been increasingly used in research and industry, the standard THz-TDS configuration relying on the use of a near-infrared (NIR) laser source remains experimentally complex and relatively costly, impeding its availability to those without the expertise to build a high-performance setup based on nonlinear optics or without the financial means to acquire a commercial unit. Broadband THz-TDS systems require an even larger financial investment, primarily because the generation and detection of spectral components exceeding 3 THz typically need an ultrafast NIR source delivering sub-100-fs pulses. Such an ultrafast source can be bulky and cost upwards of $100,000. Here, we present a broadband, compact, and portable THz-TDS system comprising three modules that allow for the implementation of a single low-cost ultrafast laser, hence significantly decreasing the overall cost of the system. In the first module, the output laser pulses are spectrally broadened through nonlinear propagation in a polarization-maintaining optical fiber and then temporally compressed to achieve a higher peak power. The other two modules utilize thick nonlinear crystals with periodically patterned surfaces that diffract NIR pulses and optimize the efficiency of THz generation and detection processes by enabling a noncollinear beam geometry. Phase-matching conditions in the nonlinear crystals are controlled by the period of the gratings to gain access to a large spectral THz bandwidth. The whole system, combining these three modules, provides access to a THz spectrum peaking at 3.5 THz and extending beyond 6 THz with a maximum dynamic range of 50 dB for time-resolved spectroscopy applications. We demonstrate the functionality of this configuration by performing THz spectroscopy measurements of water vapor contained within a closed cell. Our compact system design paves the way towards a high-performance, yet cost-effective, THz-TDS system that can be readily used in academia and industry.

2.
Appl Opt ; 61(21): 6316-6321, 2022 Jul 20.
Article in English | MEDLINE | ID: mdl-36256246

ABSTRACT

We demonstrate the feasibility of making antireflection coatings (ARCs) for terahertz (THz) light using multilayered polymer films from commercial adhesive tapes. Efficient and low-cost ARCs in the THz range are not conveniently available. Our economical approach can mitigate many of the experimental challenges posed by Fresnel reflection. Harnessing a time-domain THz spectrometer, we demonstrate the performance of several types of multilayer coatings on a variety of substrates. By varying layer stacking and thicknesses, spectral performance can be tuned and optimized for specific applications. Good agreement is found between experimental measurement and analytic calculations evaluating the performance of these multilayer tape ARCs.

SELECTION OF CITATIONS
SEARCH DETAIL
...