Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Photochem Photobiol Sci ; 21(10): 1833-1843, 2022 Oct.
Article in English | MEDLINE | ID: mdl-35947301

ABSTRACT

Nitrite ions and ammonia are widespread forms of inorganic water pollutants. Nevertheless, the mechanisms of their photolytic and photocatalytic reactions under UV-A irradiation are still fully undisclosed, particularly, at different pH values under aerobic and inert atmospheres. Herein, we have studied the photolytic decomposition of nitrite ions under different conditions using 365 nm UV-A LED as a light source instead of mercury lamps that emit photons in the UV-B region and generate a lot of heat. The results indicated that the rate of nitrite disproportionation in the dark at pH ≤ 3.0 is remarkably high relative to the rate of the photolytic decomposition. At pH ˃ 3, the photolytic reaction is negligible and nitrite ions showed considerable stability. In contrast, the photocatalytic oxidation of nitrite ions over TiO2 photocatalysts, namely, TiO2P25, TiO2UV100, and TiO2 anatase/brookite mixture proceeds at pH ˃ 3.0. TiO2 P25 exhibited the highest photocatalytic activity at pH 5. Interestingly, the photolytic simultaneous removal of nitrite ions and ammonia was possible at pH 9.0 in the absence of oxygen (Ar atmosphere). A 42.69 ± 0.66%, 27.75 ± 1.7%, and 32.74 ± 0.59% of nitrogen calculated based on nitrite, ammonia, and both of them, respectively, can be removed after 6 h of UV-A irradiation. The selectivity of N2 evolution was 77.6%. The nitrogen removal rate was significantly reduced in the presence of TiO2 photocatalyst evincing that TiO2 photocatalysis is applicable for nitrite ions oxidation, whereas the photolytic process is better suited for the simultaneous removal of nitrite ions and ammonia.


Subject(s)
Mercury , Water Pollutants, Chemical , Photolysis , Ammonia/chemistry , Nitrites , Titanium/chemistry , Water/chemistry , Ultraviolet Rays , Water Pollutants, Chemical/chemistry , Nitrogen , Oxygen , Catalysis
2.
Chemosphere ; 268: 128847, 2021 Apr.
Article in English | MEDLINE | ID: mdl-33190913

ABSTRACT

Developing photoelectrochemical (PEC) sensors based on photocatalytic materials has recently attracted great interest as an emerging technology for environmental monitoring. TiO2 P25 is a well-known highly active photocatalyst, cheap, and produced commercially on a large scale. In the current work, a practical and durable TiO2-based PEC sensor has been fabricated by immobilizing TiO2 P25 nanoparticles at disposable screen-printed carbon substrates using drop-casting method. The fabricated PEC sensor has been applied for the anodic-detection and determination of nitrite (NO2-) ions under UV(A) light (LED, 365 nm) using chronoamperometry (CA) and differential pulse voltammetry (DPV). Linear calibration curves were obtained between the photocurrent responses and the concentrations of NO2- ions in the ranges of 0.1-5.0 and 0.5-10 mg L-1 for CA and DPV, respectively. Surprisingly, the detection limits (sensitivities) of the fabricated sensor towards NO2- ions under light were enhanced by a factor of 4.75 (4.1) and 8.3 (37.4) for CA and DPV, respectively, in comparsion with those measured in the dark. It is found that the photo-excitation of TiO2 facilitates the photooxidation of NO2- ions via the photo-generated holes whereas the photogenerated electrons contribute to the enhanced photocurrent and consequently the enhanced detection limit and sensitivity. The fabricated TiO2-based PEC sensor exhibits a good stability, durability, and satisfying selectivity for NO2- ions determination. These results indicate that the TiO2-based PEC sensor fabricated by utilizing cheap and commercially available components has great potential for being transferred from lab-to-factory.


Subject(s)
Electrochemical Techniques , Nitrites , Photochemical Processes , Titanium
3.
J Phys Chem Lett ; 11(13): 5015-5020, 2020 Jul 02.
Article in English | MEDLINE | ID: mdl-32543847

ABSTRACT

Herein, a novel method is introduced to synthesize 3D hierarchically assembled BiVO4 nanosheet photoanodes. Despite the fact that the obtained photoanodes inherit the intrinsic properties of 2D and 3D structures, they generate low photocurrent under simulated solar light at 1.0 sun. Upon modification with the cobalt-phosphate (Co-Pi) cocatalyst, the photocurrent is dramatically enhanced from 0.41 to 3.32 mA cm-2 at 1.23 VRHE. Charge-transfer kinetic studies by intensity-modulated photocurrent spectroscopy indicated that the low photocurrent response is mainly due to the high density of surface states, which pin the Fermi level and suspend the band bending. The Co-Pi loading passivates these surface states, unpins the Fermi level, and thus resumes the band bending. It also greatly enhances the rate constant of charge transfer and the overall efficiency, evincing that Co-Pi exhibits a dual function (i.e., passivation and catalysis). The current results explicitly disclose the role of the Co-Pi cocatalyst in photoelectrochemical solar water splitting on BiVO4.

4.
ACS Appl Mater Interfaces ; 7(43): 24053-62, 2015 Nov 04.
Article in English | MEDLINE | ID: mdl-26488924

ABSTRACT

The surface modification of semiconductor photoelectrodes with passivation overlayers has recently attracted great attention as an effective strategy to improve the charge-separation and charge-transfer processes across semiconductor-liquid interfaces. It is usually carried out by employing the sophisticated atomic layer deposition technique, which relies on reactive and expensive metalorganic compounds and vacuum processing, both of which are significant obstacles toward large-scale applications. In this paper, a facile water-based solution method has been developed for the modification of nanostructured hematite photoanode with TiO2 overlayers using a water-soluble titanium complex (i.e., titanium bis(ammonium lactate) dihydroxide, TALH). The thus-fabricated nanostructured hematite photoanodes have been characterized by X-ray diffraction, scanning electron microscopy, and X-ray photoelectron spectroscopy. Photoelectrochemical measurements indicated that a nanostructured hematite photoanodes modified with a TiO2 overlayer exhibited a photocurrent response ca. 4.5 times higher (i.e., 1.2 mA cm(-2) vs RHE) than that obtained on the bare hematite photoanode (i.e., 0.27 mA cm(-2) vs RHE) measured under standard illumination conditions. Moreover, a cathodic shift of ca. 190 mV in the water oxidation onset potential was achieved. These results are discussed and explored on the basis of steady-state polarization, transient photocurrent response, open-circuit potential, intensity-modulated photocurrent spectroscopy, and impedance spectroscopy measurements. It is concluded that the TiO2 overlayer passivates the surface states and suppresses the surface electron-hole recombination, thus increasing the generated photovoltage and the band bending. The present method for the hematite electrode modification with a TiO2 overlayer is effective and simple and might find broad applications in the development of stable and high-performance photoelectrodes.

5.
Phys Chem Chem Phys ; 14(8): 2774-83, 2012 Feb 28.
Article in English | MEDLINE | ID: mdl-22270325

ABSTRACT

The photooxidation of methanol as a model substance for pollutants on rutile TiO(2) (001) and (100) surfaces was investigated using intensity modulated photocurrent spectroscopy (IMPS). The results are analyzed in view of the influence of the surface structure, the methanol concentration and the electrode potential on the rate constants of charge transfer and recombination. The obtained results have been explained with a model combining the theory of IMPS for a bulk semiconductor surface and the nature of the surface-bound intermediates (alternatively mobile or immobile OH˙ radicals). The results indicate that water photooxidation proceeds via mobile OH˙ radicals on both surfaces, while methanol addition gives rise to the involvement of immobile OH˙ radicals on the (100) surface. Detailed analysis in view of the surface structures suggests that the latter observation is due to efficient electron transfer from bridging OH˙ radicals on the (100) surface to methanol, while coupling of two of these radicals occurs in the absence of methanol, making them appear as mobile OH˙ radicals. In the case of the (001) surface, the coupling reaction dominates even in the presence of methanol due to the smaller distance between the bridging OH˙ radicals, leading to more efficient water oxidation, but less efficient methanol photooxidation on this surface.

SELECTION OF CITATIONS
SEARCH DETAIL
...