Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
ISME J ; 18(1)2024 Jan 08.
Article in English | MEDLINE | ID: mdl-38412118

ABSTRACT

Gut microbiomes are increasingly recognized for mediating diverse biological aspects of their hosts, including complex behavioral phenotypes. Although many studies have reported that experimental disruptions to the gut microbial community result in atypical host behavior, studies that address how gut microbes contribute to adaptive behavioral trait variation are rare. Eusocial insects represent a powerful model to test this, because of their simple gut microbiota and complex division of labor characterized by colony-level variation in behavioral phenotypes. Although previous studies report correlational differences in gut microbial community associated with division of labor, here, we provide evidence that gut microbes play a causal role in defining differences in foraging behavior between European honey bees (Apis mellifera). We found that gut microbial community structure differed between hive-based nurse bees and bees that leave the hive to forage for floral resources. These differences were associated with variation in the abundance of individual microbes, including Bifidobacterium asteroides, Bombilactobacillus mellis, and Lactobacillus melliventris. Manipulations of colony demography and individual foraging experience suggested that differences in gut microbial community composition were associated with task experience. Moreover, single-microbe inoculations with B. asteroides, B. mellis, and L. melliventris caused effects on foraging intensity. These results demonstrate that gut microbes contribute to division of labor in a social insect, and support a role of gut microbes in modulating host behavioral trait variation.


Subject(s)
Gastrointestinal Microbiome , Microbiota , Bees , Animals , Gastrointestinal Microbiome/genetics
2.
Nat Ecol Evol ; 7(8): 1232-1244, 2023 08.
Article in English | MEDLINE | ID: mdl-37264201

ABSTRACT

Understanding how genotypic variation results in phenotypic variation is especially difficult for collective behaviour because group phenotypes arise from complex interactions among group members. A genome-wide association study identified hundreds of genes associated with colony-level variation in honeybee aggression, many of which also showed strong signals of positive selection, but the influence of these 'colony aggression genes' on brain function was unknown. Here we use single-cell (sc) transcriptomics and gene regulatory network (GRN) analyses to test the hypothesis that genetic variation for colony aggression influences individual differences in brain gene expression and/or gene regulation. We compared soldiers, which respond to territorial intrusion with stinging attacks, and foragers, which do not. Colony environment showed stronger influences on soldier-forager differences in brain gene regulation compared with brain gene expression. GRN plasticity was strongly associated with colony aggression, with larger differences in GRN dynamics detected between soldiers and foragers from more aggressive relative to less aggressive colonies. The regulatory dynamics of subnetworks composed of genes associated with colony aggression genes were more strongly correlated with each other across different cell types and brain regions relative to other genes, especially in brain regions involved with olfaction and vision and multimodal sensory integration, which are known to mediate bee aggression. These results show how group genetics can shape a collective phenotype by modulating individual brain gene regulatory network architecture.


Subject(s)
Aggression , Bees , Behavior, Animal , Genome-Wide Association Study , Animals , Aggression/physiology , Bees/genetics , Brain/physiology , Gene Expression Regulation , Gene Regulatory Networks
3.
Sci Rep ; 10(1): 3101, 2020 02 20.
Article in English | MEDLINE | ID: mdl-32080242

ABSTRACT

Crop pollination by the western honey bee Apis mellifera is vital to agriculture but threatened by alarmingly high levels of colony mortality, especially in Europe and North America. Colony loss is due, in part, to the high viral loads of Deformed wing virus (DWV), transmitted by the ectoparasitic mite Varroa destructor, especially throughout the overwintering period of a honey bee colony. Covert DWV infection is commonplace and has been causally linked to precocious foraging, which itself has been linked to colony loss. Taking advantage of four brain transcriptome studies that unexpectedly revealed evidence of covert DWV-A infection, we set out to explore whether this effect is due to DWV-A mimicking naturally occurring changes in brain gene expression that are associated with behavioral maturation. Consistent with this hypothesis, we found that brain gene expression profiles of DWV-A infected bees resembled those of foragers, even in individuals that were much younger than typical foragers. In addition, brain transcriptional regulatory network analysis revealed a positive association between DWV-A infection and transcription factors previously associated with honey bee foraging behavior. Surprisingly, single-cell RNA-Sequencing implicated glia, not neurons, in this effect; there are relatively few glial cells in the insect brain and they are rarely associated with behavioral plasticity. Covert DWV-A infection also has been linked to impaired learning, which together with precocious foraging can lead to increased occurrence of infected bees from one colony mistakenly entering another colony, especially under crowded modern apiary conditions. These findings provide new insights into the mechanisms by which DWV-A affects honey bee health and colony survival.


Subject(s)
Bees/virology , Behavior, Animal , RNA Virus Infections/veterinary , RNA Viruses , Viral Load , Agriculture , Animals , Brain/physiopathology , Female , Gene Expression Regulation , Gene Regulatory Networks , Male , Pollination , RNA Virus Infections/physiopathology , RNA-Seq , Social Behavior , Varroidae/virology , Virus Diseases
SELECTION OF CITATIONS
SEARCH DETAIL
...