Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 101
Filter
1.
Phys Chem Chem Phys ; 26(34): 22539-22548, 2024 Aug 28.
Article in English | MEDLINE | ID: mdl-39150179

ABSTRACT

Among the serious environmental problems that attracted much attention from the broader public is the high toxicity of dioxins. Considerable efforts have been made to develop techniques and materials that could help in their efficient removal from the environment. Due to its high specific surface area, numerous active sites, and outstanding structural and electronic properties, antimonene is considered for a variety of potential applications in different fields such as energy storage, electrocatalysis, and biomedicine. The present study adds to this portfolio by suggesting antimonene as a promising candidate for dioxin capture. Using density functional theory calculations, we studied the adsorption of 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) on pristine as well as Ca-, Ti-, and Ni-doped antimonene. Three spatial configurations of the adsorption of TCDD on antimonene were analyzed. The results obtained from the calculation of adsorption energies, charge transfer, and densities of states provide evidence that antimonene outperforms other nanomaterials that have been previously suggested for dioxin capture applications. Therefore, we propose these substrates (i.e., pristine and doped antimonene) as potential capture agents for removing such toxic organic pollutants.

2.
RSC Adv ; 14(36): 26050-26058, 2024 Aug 16.
Article in English | MEDLINE | ID: mdl-39161431

ABSTRACT

The detection of heavy metal ions, particularly Hg2+, has gained significant attention due to their severe adverse effects on human health and ecosystems. Conventional methods for monitoring these metals in freshwater often suffer from limitations in sensitivity, accuracy, and cost-effectiveness. This work introduces a novel heavy metal sensor based on Tamm resonance within a one-dimensional (1D) porous TiO2 photonic crystal structure. The sensor design includes a prism, a silver (Ag) layer, a cavity, and a ternary multilayer porous TiO2 layer. Reflectance spectra are analyzed using the transfer matrix method. A key aspect of this study is the optimization of sensor performance, which involves adjusting the thicknesses of all layers and the porosity of the multilayer porous TiO2. This optimization strategy is critical for achieving high sensitivity. The results demonstrate that the optimized sensor exhibits a high sensitivity of 0.045 nm ppm-1 for Hg2+ solutions. This sensitivity arises from the effective integration of Tamm resonance with the properties of the porous TiO2 photonic crystal. The proposed structure shows great potential for applications in heavy metal sensing, especially for detecting Hg2+ ion contamination in drinking water with high sensitivity and accuracy. In addition to its high performance, the photonic crystal sensor offers extended lifetime, rapid measurement capabilities, cost-effectiveness, and potential for integration into compact devices, making it a promising solution for environmental monitoring and water quality assessment.

3.
J Chem Theory Comput ; 20(12): 5291-5305, 2024 Jun 25.
Article in English | MEDLINE | ID: mdl-38831535

ABSTRACT

The significance of soil organic matter (SOM) in environmental contexts, particularly its role in pollutant adsorption, has prompted an increased utilization of molecular simulations to understand microscopic interactions. This study introduces a coarse-grained SOM model, parametrized within the framework of the versatile Martini 3 force field. Utilizing models generated by the Vienna Soil Organic Matter Modeler 2, which constructs humic substance systems from a fragment database, we employed Swarm-CG to parametrize the fragments and subsequently assembled them into macromolecules. Direct Boltzmann inversion (DBI) facilitated the determination of bonded parameters between fragments. The parametrization yielded favorable agreement in the radius of gyration and solvent-accessible surface area. Transfer free energies exhibited a strong correlation with hexadecane-water and chloroform-water values, albeit deviations were noted for octanol-water values. Comparing densities of modeled Leonardite humic acid systems at coarse-grained and atomistic levels revealed promising agreement, particularly at higher water concentrations. The DBI approach effectively reproduced average values of bonded interactions between fragments. Radial distribution functions between carboxylate groups and calcium ions showed partial agreement, however, reproducing certain peaks was challenging due to fixed bead sizes. Detailed analysis of atomistic systems revealed different configurations between the groups, explaining discrepancies. The present contribution provides a comprehensive insight into the properties, strengths, and weaknesses of the coarse-grained SOM model, serving as a foundation for future investigations encompassing pollutant interactions and varied SOM compositions.

4.
Sci Total Environ ; 940: 173510, 2024 Aug 25.
Article in English | MEDLINE | ID: mdl-38806124

ABSTRACT

The adsorption of phosphorus (P) onto active soil surfaces plays a pivotal role in immobilizing P, thereby influencing soil fertility and the filter function of soil to protect freshwater systems from eutrophication. Competitive anions, such as organic matter (OM), significantly affect the strength of this P-binding, eventually controlling P mobility and release, but surprisingly, these processes are insufficiently understood at the molecular level. In this study, we provide a molecular-level perspective on the influence of OM on P binding at the goethite-water interface using a combined experimental-theoretical approach. By examining the impact of citric acid (CIT) and histidine (HIS) on the adsorption of orthophosphate (OP), glycerol phosphate (GP), and inositol hexaphosphate (IHP) through adsorption experiments and molecular dynamics simulations, we address fundamental questions regarding P binding trends, OM interaction with the goethite surface, and the effect of OM on P adsorption. Our findings reveal the complex nature of P adsorption on goethite surfaces, where the specific OM, treatment conditions (covering the surface with OM or simultaneous co-adsorption), and initial concentrations collectively shape these interactions. P adsorption on goethite exhibits a binding strength increasing in the order of GP < OP < IHP. Crucially, this trend remains consistent across all adsorption experiments, regardless of the presence or absence of OM, CIT, or HIS, and irrespective of the specific treatment method. Notably, OP is particularly susceptible to inhibition by OM, while adsorption of GP depends on specific OM treatments. Despite being less sensitive to OM, IHP shows reduced adsorption, especially at higher initial P concentrations. Of significance is the strong inhibitory effect of CIT, particularly evident when the surface is pre-covered, resulting in a substantial 70 % reduction in OP adsorption compared to bare goethite. The sequence of goethite binding affinity to P and OM underscores a higher affinity of CIT and HIS compared to OP and GP, suggesting that OM can effectively compete with both OP and GP and replace them at the surface. In contrast, the impact of OM on IHP adsorption appears insignificant, as IHP exhibits a higher affinity than both CIT and HIS towards the goethite surface. The coverage of goethite surfaces with OM results in the blocking of active sites and the generation of an unfavorable electric potential and field, inhibiting anion adsorption and consequently reducing P binding. It is noteworthy that electrostatic interactions predominantly contribute more to the binding of P and OM to the surface compared to dispersion interactions.

5.
RSC Adv ; 14(19): 13628-13639, 2024 Apr 22.
Article in English | MEDLINE | ID: mdl-38665496

ABSTRACT

Copper oxide-based nanocomposites are promising electrode materials for high-performance supercapacitors due to their unique properties that aid electrolyte access and ion diffusion to the electrode surface. Herein, a facile and low-cost synthesis in situ strategy based on co-precipitation and incorporation processes of reduced graphene oxide (rGO), followed by in situ oxidative polymerization of aniline monomer has been reported. CuO@Cu4O3/rGO/PANI nanocomposite revealed the good distribution of CuO@Cu4O3 and rGO within the polymer matrix which allows improved electron transport and ion diffusion process. Galvanostatic charge-discharge (GCD) results displayed a higher specific capacitance value of 508 F g-1 for CuO@Cu4O3/rGO/PANI at 1.0 A g-1 in comparison to the pure CuO@Cu4O3 278 F g-1. CuO@Cu4O3/rGO/PANI displays an energy density of 23.95 W h kg-1 and power density of 374 W kg-1 at the current density of 1 A g-1 which is 1.8 times higher than that of CuO@Cu4O3 (13.125 W h kg-1) at the same current density. The retention of the electrode was 93% of its initial capacitance up to 5000 cycles at a scan rate of 100 mV s-1. The higher capacitance of the CuO@Cu4O3/rGO/PANI electrode was credited to the formation of a fibrous network structure and rapid ion diffusion paths through the nanocomposite matrix that resulted in enhanced surface-dependent electrochemical properties.

6.
RSC Adv ; 14(11): 7877-7890, 2024 Feb 29.
Article in English | MEDLINE | ID: mdl-38449824

ABSTRACT

In this study, a theoretical examination is conducted to investigate the biosensing capabilities of different surface plasmon resonance (SPR) based hybrid multilayer structures, which are composed of two-dimensional (2D) materials. The transfer matrix formulation is implemented to calibrate the results of this study. A He-Ne laser of wavelength = 632.8 nm is used to simulate the results. Many permutations and combinations of layers of silver (Ag), aluminum oxynitride (AlON), and 2D materials were utilized to obtain the optimized structure. Ten dielectrics and twelve 2D materials were tested for a highly sensitive multilayer hybrid sensing design, which is composed of the prism (Ohara S-FPL53)/Ag/AlON/WS2/AlON/sensing medium. The optimized biosensing design is capable of sensing and detecting analytes whose refractive variation is limited between 1.33 and 1.34. The maximum sensitivity, which is achieved by using the proposed design is 488.2° per RIU. Additionally, the quality factor, figure of merit, detection limit, and qualification limit values of the optimized design were also calculated to obtain a true picture of the sensing capabilities. The designing approach based on the multilayer hybrid SPR biosensors has the potential to develop various plasmonic biosensors that are related to food, chemical, and biomedical engineering fields.

7.
RSC Adv ; 14(13): 8752-8768, 2024 Mar 14.
Article in English | MEDLINE | ID: mdl-38495997

ABSTRACT

In synergetic investigations, the adsorption effectiveness of diatomite-based zeolitic structure (ZD) as well as its ß-cyclodextrin (CD) hybrids (CD/ZD) towards uranium ions (U(vi)) was evaluated to examine the influence of the transformation procedures. The retention behaviors and mechanistic processes have been demonstrated through analyzing the steric and energetic factors employing the modern equilibrium approach (a monolayer model with a single energy level). After the saturation phase, the uptake characteristics of U(vi) were dramatically improved to 297.5 mg g-1 after the CD blending procedure versus ZD (262.3 mg g-1) or 127.8 mg g-1. The steric analysis indicated a notable increase in binding site levels after the zeolitization steps (Nm = 85.7 mg g-1) as well as CD implementation (Nm = 91.2 mg g-1). This finding clarifies the reported improvement in the ability of CD/ZD to effectively retain the U(vi) ions. Furthermore, every single active site of the CD/ZD material has the capacity to adsorb around four ions, which are aligned according to a vertical pattern. The energetic aspects, specifically Gaussian energy (<8 kJ mol-1) along with retention energy (<40 kJ mol-1), validate the regulated influences of the physical mechanistic processes. The physical adsorption of U(vi) seems to depend on various intermolecular forces, such as van der Waals forces, in conjunction with zeolitic ion exchanging pathways (0.6-25 kJ mol-1). The thermodynamic assets have been evaluated to confirm the exothermic together with spontaneous adsorption U(vi) by ZD and its blend with CD (CD/ZD).

8.
Int J Biol Macromol ; 265(Pt 1): 130711, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38490378

ABSTRACT

Magnesium-trapped hydroxyapatite (Mg.HP) was hybridized with cellulose fiber to produce a bio-composite (CLF/HP) with enhanced adsorption affinities for two types of toxic pesticides (chlorpyrifos (CF) and omethoate (OM)). The enhancement influence of the hybridized cellulose on the adsorption performances of Mg.HP was illustrated based on the determined steric and energetic factors. The computed CF and OM adsorption performances of CLF/HP during the saturation phases are 279.8 mg/g and 317.9 mg/g, respectively, which are significantly higher than the determined values using Mg/HP (143.4 mg/g (CF) and 145.3 mg/g (OM)). The steric analysis demonstrates a strong impact of the hybridization process on the reactivity of the surface of the composite. While CLF/HP reflects effective uptake site densities (Nm) of 93.3 mg/g (CF) and 135.3 mg/g (OM), the estimated values for Mg.HP are 51.2 mg/g (CF) and 46.11 mg/g (OM), which explain the reported enhancement in the adsorption performances of the composite. The capacity of each uptake site to be occupied with more than one molecule (n (CF) = 3-3.74 and n (OM) = 2.35-3.54) suggests multimolecular uptake. The energetic factors suggested physical mechanistic processes of spontaneous and exothermic behaviors either during the uptake of CF or OM.


Subject(s)
Chlorpyrifos , Dimethoate/analogs & derivatives , Pesticides , Cellulose , Durapatite , Adsorption
9.
RSC Adv ; 14(5): 3104-3121, 2024 Jan 17.
Article in English | MEDLINE | ID: mdl-38249663

ABSTRACT

Kaolinite can undergo a controlled morphological modification process into exfoliated nanosilicate sheets (EXK) and silicate nanotubes (KNTs). The modified structures were assessed as potential effective adsorbents for the retention of Cs+ ions. The impact of the modification process on the retention properties was assessed based on conventional and advanced equilibrium studies, considering the related steric and energetic functions. The synthetic KNTs exhibit a retention capacity of 249.7 mg g-1 as compared to EXK (199.8 mg g-1), which is significantly higher than raw kaolinite (73.8 mg g-1). The kinetic modeling demonstrates the high effectiveness of the pseudo-first-order kinetic model (R2 > 0.9) to illustrate the sequestration reactions of Cs+ ions by K, EXK, and KNTs. The enhancement effect of the modification processes can be illustrated based on the statistical investigations. The presence of active and vacant receptors enhanced greatly from 19.4 mg g-1 for KA to 40.8 mg g-1 for EXK and 46.9 mg g-1 for KNTs at 298 K. This validates the significant impact of the modification procedures on the specific surface area, reaction interface, and reacting chemical groups' exposure. This also appeared in the enhancement of the reactivity of their surfaces to be able to uptake 10 Cs+ ions by KNTs and 5 ions by EXK as compared to 4 ions by kaolinite. The thermodynamic and energetic parameters (Gaussian energy < 8.6 kJ mol-1; uptake energy < 40 kJ mol-1) show that the physical processes are dominant, which have spontaneous and exothermic properties. The synthetic EXK and KNT structures validate the high elimination performance of the retention of Cs+ either in the existence of additional anions or cations.

11.
Sci Rep ; 14(1): 1015, 2024 Jan 10.
Article in English | MEDLINE | ID: mdl-38200033

ABSTRACT

The detection of heavy metals in water, especially Pb2+ ions, is important due to their severe hazardous effects. To address this issue, a highly controlled hexagonal TiON/TiO2 heterostructure has been synthesized in this study. The fabrication process involved the utilization of atomic layer deposition and direct current sputtering techniques to deposit TiO2 and TiON layers onto a porous Al2O3 membrane used as a template. The resulting heterostructure exhibits a well-ordered hollow tube structure with a diameter of 345 nm and a length of 1.2 µm. The electrochemical sensing of Pb2+ ions in water is carried out using a cyclic voltammetry technique under both light and dark conditions. The concentration range for the Pb2+ ions ranges from 10-5 to 10-1 M. The sensitivity values obtained for the sensor are 1.0 × 10-6 in dark conditions and 1.0 × 10-4 in light conditions. The remarkable enhancement in sensitivity under light illumination can be attributed to the increased activity and electron transfer facilitated by the presence of light. The sensor demonstrates excellent reproducibility, highlighting its reliability and consistency. These findings suggest that the proposed sensor holds great promise for the detection of Pb2+ ions in water, thereby facilitating environmental monitoring, water quality assessment, and safety regulation across various industries. Furthermore, the eco-friendly and straightforward preparation techniques employed in its fabrication provide a significant advantage for practical and scalable implementation.

12.
Cell Rep ; 42(11): 113354, 2023 11 28.
Article in English | MEDLINE | ID: mdl-37917586

ABSTRACT

The study of fallopian tube (FT) function in health and disease has been hampered by limited knowledge of FT stem cells and lack of in vitro models of stem cell renewal and differentiation. Using optimized organoid culture conditions to address these limitations, we find that FT stem cell renewal is highly dependent on WNT/ß-catenin signaling and engineer endogenous WNT/ß-catenin signaling reporter organoids to biomark, isolate, and characterize these cells. Using functional approaches, as well as bulk and single-cell transcriptomics analyses, we show that an endogenous hormonally regulated WNT7A-FZD5 signaling axis is critical for stem cell renewal and that WNT/ß-catenin pathway-activated cells form a distinct transcriptomic cluster of FT cells enriched in extracellular matrix (ECM) remodeling and integrin signaling pathways. Overall, we provide a deep characterization of FT stem cells and their molecular requirements for self-renewal, paving the way for mechanistic work investigating the role of stem cells in FT health and disease.


Subject(s)
Fallopian Tubes , beta Catenin , Female , Humans , beta Catenin/metabolism , Fallopian Tubes/metabolism , Transcriptome/genetics , Stem Cells/metabolism , Wnt Signaling Pathway , Organoids/metabolism , Wnt Proteins/genetics , Wnt Proteins/metabolism , Frizzled Receptors/metabolism
13.
Transl Cancer Res ; 12(10): 2682-2692, 2023 Oct 31.
Article in English | MEDLINE | ID: mdl-37969399

ABSTRACT

Background: Mucinous ovarian carcinomas (MOCs) are rare ovarian tumours accounting for 3% of all epithelial ovarian carcinomas (EOCs). They are either expansile or infiltrative, based on the tumour's histological pattern of invasion. MOCs have a distinct molecular profile, natural history, chemo-sensitivity, and prognosis compared to other EOCs. The aim of this study was to describe patient and tumour characteristics, as well as survival outcomes of expansile and infiltrative primary MOCs. Methods: This was a retrospective cohort study conducted at a tertiary cancer centre. Patients had surgery for primary MOC between Jul 1, 2010 and Oct 28, 2022. All patients discussed at the Oxford multidisciplinary team (MDT) meeting with a diagnosis of MOC were included. We excluded patients with mucinous metastatic carcinoma (MMC), dual histological diagnoses, those who died before treatment was initiated, and patients with incomplete records. Results: A total of 47 patients were identified and 14 were excluded. Out of the remaining 33 MOCs, 23 (70.6%) were expansile and 10 (30.4%) were infiltrative. The median follow-up was 37 months (95% CI: 14.1-69.8). Patients with infiltrative tumours were older than those with expansile tumours (median age 62 vs. 55 years, P=0.049). Infiltrative tumours were diagnosed at a more advanced International Federation of Gynaecology and Obstetrics (FIGO) stage compared to expansile tumours: FIGO stage II/III 50% vs. 8.2% (P=0.002). We found paired-box gene 8 (PAX8) more frequently expressed in expansile tumours (75% vs. 37.5%, P=0.099). Adjuvant treatment was administered in 50% of patients with infiltrative disease, compared to only 13% of those with expansile disease (P=0.036). 80% of patients who have relapsed had received adjuvant chemotherapy, compared to 17.2% of patients without relapse (P=0.012). At 3 years, there was a statistically significant difference in progression-free survival (PFS) (94.7% vs. 65.6%, P=0.02) between the expansile and infiltrative groups, but no difference in overall survival (OS) (88.8% vs. 90%, P=0.875). Conclusions: Patients with infiltrative tumours were older, more likely to have bilateral tumours and more likely to have an advanced FIGO stage at diagnosis. Adjuvant treatment was more likely to be administered to patients with infiltrative tumours, however, this did not prevent relapse. PFS at 3 years was significantly higher in patients with expansile tumours. PAX8 was more frequently expressed by expansile tumours.

14.
BMC Bioinformatics ; 24(1): 453, 2023 Nov 30.
Article in English | MEDLINE | ID: mdl-38036971

ABSTRACT

BACKGROUND: Genomic insights in settings where tumour sample sizes are limited to just hundreds or even tens of cells hold great clinical potential, but also present significant technical challenges. We previously developed the DigiPico sequencing platform to accurately identify somatic mutations from such samples. RESULTS: Here, we complete this genomic characterisation with copy number. We present a novel protocol, PicoCNV, to call allele-specific somatic copy number alterations from picogram quantities of tumour DNA. We find that PicoCNV provides exactly accurate copy number in 84% of the genome for even the smallest samples, and demonstrate its clinical potential in maintenance therapy. CONCLUSIONS: PicoCNV complements our existing platform, allowing for accurate and comprehensive genomic characterisations of cancers in settings where only microscopic samples are available.


Subject(s)
DNA Copy Number Variations , Neoplasms , Humans , Genome , Genomics , Neoplasms/genetics , Neoplasms/pathology , DNA, Neoplasm/genetics
15.
Nanomaterials (Basel) ; 13(20)2023 Oct 19.
Article in English | MEDLINE | ID: mdl-37887943

ABSTRACT

Gas sensing is of significant importance in a wide range of disciplines, including industrial safety and environmental monitoring. In this work, a low-cost SILAR (Successive Ionic Layer Adsorption and Reaction) technique was employed to fabricate pure CuO, Zn-doped CuO, and Na-doped CuO nanotextured films to efficiently detect CO2 gas. The structures, morphologies, chemical composition, and optical properties of all films are characterized using different tools. All films exhibit a crystalline monoclinic phase (tenorite) structure. The average crystallite size of pure CuO was 83.5 nm, whereas the values for CuO/Zn and CuO/Na were 73.15 nm and 63.08 nm, respectively. Subsequently, the gas-sensing capabilities of these films were evaluated for the detection of CO2 in terms of sensor response, selectivity, recovery time, response time, and limits of detection and quantification. The CuO/Na film offered the most pronounced sensitivity towards CO2 gas, as evidenced by a sensor response of 12.8% at room temperature and a low limit of detection (LoD) of 2.36 SCCM. The response of this sensor increased to 64.5% as the operating temperature increased to 150 °C. This study thus revealed a brand-new CuO/Na nanostructured film as a highly effective and economically viable sensor for the detection of CO2.

16.
Biosensors (Basel) ; 13(7)2023 Jun 27.
Article in English | MEDLINE | ID: mdl-37504082

ABSTRACT

This research presented a comprehensive study of a one-dimensional (1D) porous silicon phononic crystal design as a novel fluidic sensor. The proposed sensor is designed to detect sulfuric acid (H2SO4) within a narrow concentration range of 0-15%. Sulfuric acid is a mineral acid extensively utilized in various physical, chemical, and industrial applications. Undoubtedly, its concentration, particularly at lower levels, plays a pivotal role in these applications. Hence, there is an urgent demand for a highly accurate and sensitive tool to monitor even the slightest changes in its concentration, which is crucial for researchers. Herein, we presented a novel study on the optimization of the phononic crystal (PnC) sensor. The optimization process involves a comparative strategy between binary and ternary PnCs, utilizing a multilayer stack comprising 1D porous silicon (PSi) layers. Additionally, a second comparison is conducted between conventional Bragg and local resonant PnCs to demonstrate the design with the highest sensitivity. Moreover, we determine the optimum values for the materials' thickness and number of periods. The results revealed that the ternary local resonant PnC design with the configuration of {silicone rubber/[PSi1/PSi2/PSi3]N/silicone rubber} is the optimal sensor design. The sensor provided a super sensitivity of 2.30 × 107 Hz for a concentration change of just 2%. This exceptional sensitivity is attributed to the presence of local resonant modes within the band gap of PnCs. The temperature effects on the local resonant modes and sensor performance have also been considered. Furthermore, additional sensor performance parameters such as quality factor, figure of merit, detection limit, and damping rate have been calculated to demonstrate the effectiveness of the proposed liquid sensor. The transfer matrix method was utilized to compute the transmission spectra of the PnC, and Hashin's expression was employed to manipulate the porous silicon media filled with sulfuric acid at various concentrations. Lastly, the proposed sensor can serve as an efficient tool for detecting acidic rain, contaminating freshwater, and assessing food and liquid quality, as well as monitoring other pharmaceutical products.


Subject(s)
Silicon , Silicone Elastomers , Porosity , Sulfuric Acids
17.
Heliyon ; 9(7): e18035, 2023 Jul.
Article in English | MEDLINE | ID: mdl-37483698

ABSTRACT

Purpose: Although there is an established role for microbiome dysbiosis in the pathobiology of colorectal cancer (CRC), CRC patients of various race/ethnicities demonstrate distinct clinical behaviors. Thus, we investigated microbiome dysbiosis in Egyptian, African American (AA), and European American (EA) CRC patients. Patients and methods: CRCs and their corresponding normal tissues from Egyptian (n = 17) patients of the Alexandria University Hospital, Egypt, and tissues from AA (n = 18) and EA (n = 19) patients at the University of Alabama at Birmingham were collected. DNA was isolated from frozen tissues, and the microbiome composition was analyzed by 16S rRNA sequencing. Differential microbial abundance, diversity, and metabolic pathways were identified using linear discriminant analysis (LDA) effect size analyses. Additionally, we compared these profiles with our previously published microbiome data derived from Kenyan CRC patients. Results: Differential microbiome analysis of CRCs across all racial/ethnic groups showed dysbiosis. There were high abundances of Herbaspirillum and Staphylococcus in CRCs of Egyptians, Leptotrichia in CRCs of AAs, Flexspiria and Streptococcus in CRCs of EAs, and Akkermansia muciniphila and Prevotella nigrescens in CRCs of Kenyans (LDA score >4, adj. p-value <0.05). Functional analyses showed distinct microbial metabolic pathways in CRCs compared to normal tissues within the racial/ethnic groups. Egyptian CRCs, compared to normal tissues, showed lower l-methionine biosynthesis and higher galactose degradation pathways. Conclusions: Our findings showed altered mucosa-associated microbiome profiles of CRCs and their metabolic pathways across racial/ethnic groups. These findings provide a basis for future studies to link racial/ethnic microbiome differences with distinct clinical behaviors in CRC.

18.
RSC Adv ; 13(24): 16154-16164, 2023 May 30.
Article in English | MEDLINE | ID: mdl-37260718

ABSTRACT

In this study, the biosensing capabilities of conventional and hybrid multilayer structures were theoretically examined based on surface plasmon resonance (SPR). The transfer matrix method is adopted to obtain the reflectance spectra of the hybrid multilayer structure in the visible region. In this regard, the considered SPR sensor is configured as, [prism (CaF2)/Al2O3/Ag/Al2O3/2D material/Al2O3/Sensing medium]. Interestingly, many optimization steps were conducted to obtain the highest sensitivity of the new SPR biosensor from the hybrid structure. Firstly, the thickness of an Al2O3 layer with a 2D material (Blue P/WS2) is optimized to obtain an upgraded sensitivity of 360° RIU-1. Secondly, the method to find the most appropriate 2D material for the proposed design is investigated to obtain an ultra-high sensitivity. Meanwhile, the inclusion of black phosphorus (BP) increases the sensor's sensitivity to 466° RIU-1. Thus, black phosphorus (BP) was obtained as the most suitable 2D material for the proposed design. In this regard, the proposed hybrid SPR biosensing design may pave the way for further opportunities for the development of various SPR sensors to be utilized in chemical and biomedical engineering fields.

19.
Sci Total Environ ; 887: 163692, 2023 Aug 20.
Article in English | MEDLINE | ID: mdl-37156390

ABSTRACT

Phosphorus (P) is an indispensable element to all forms of life and its efficient use in fertilizers is one of the conditions for food security. The efficiency of P fertilizers is affected by P mobilization and P fixation, both depending on the P binding strength to soil constituents. This review provides an overview of the P binding to soil constituents, especially to P-fixing mineral surfaces and its investigation using state-of-the-art Computational Chemistry (CC). A particular focus will be on goethite (α-FeOOH), which is highly significant in the context of P fixation in soils, given its prevalence, high susceptibility to P, and wide distribution across both oxic and anoxic environments. First, a brief overview will be given on experimental efforts related to the P adsorption at mineral surfaces and the factors affecting this process. Here, we will discuss the process of P adsorption, with a focus on important factors that influence this process, such as pH, surface crystallinity and morphology, competing anions, and electrolyte solutions. We will also explore the various techniques used to study this process and investigate the resulting binding motifs. Next, a brief introduction into common CC methods, techniques, and applications is presented, highlighting the advantages and limitations of each approach. Then, a comprehensive discussion of a wide range of the most relevant computational studies related to the phosphate binding issue will be provided. This will be followed by the main part of this review which is focusing on a possible strategy to cope with the soil heterogeneity by breaking down the complexity of P behavior in soil into well-defined models that can be discussed in terms of particular key factors. Hence, different molecular model systems and molecular simulations are introduced to reveal the P binding to soil organic matter (SOM), metal ions, and mineral surfaces. Simulation results provided an in-depth understanding of the P binding problem and explained at a molecular level the effects of surface plane, binding motif, kind and valency of metal ions, SOM composition, water, pH, and redox potential on the P binding in soil. On this basis, an overall molecular picture of P binding in soil can be then obtained by combining results for the different models. Eventually, challenges and further modifications of the existing molecular modeling approaches are discussed, such as steps necessary to bridge the molecular with the mesoscale.

20.
RSC Adv ; 13(10): 6737-6746, 2023 Feb 21.
Article in English | MEDLINE | ID: mdl-36860529

ABSTRACT

In this research, we have a theoretical simple and highly sensitive sodium chloride (NaCl) sensor based on the excitation of Tamm plasmon resonance through a one-dimensional photonic crystal structure. The configuration of the proposed design was, [prism/gold (Au)/water cavity/silicon (Si)/calcium fluoride (CaF2)10/glass substrate]. The estimations are mainly investigated based on both the optical properties of the constituent materials and the transfer matrix method as well. The suggested sensor is designed for monitoring the salinity of water by detecting the concentration of NaCl solution through near-infrared (IR) wavelengths. The reflectance numerical analysis showed the Tamm plasmon resonance. As the water cavity is filled with NaCl of concentrations ranging from 0 g l-1 to 60 g l-1, Tamm resonance is shifted towards longer wavelengths. Furthermore, the suggested sensor provides a relatively high performance compared to its photonic crystal counterparts and photonic crystal fiber designs. Meanwhile, the sensitivity and detection limit of the suggested sensor could reach the values of 24 700 nm per RIU (0.576 nm (g l)-1) and 0.217 g l-1, respectively. Therefore, the suggested design could be of interest as a promising platform for sensing and monitoring NaCl concentrations and water salinity as well.

SELECTION OF CITATIONS
SEARCH DETAIL