Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 31
Filter
Add more filters










Publication year range
1.
Article in English | MEDLINE | ID: mdl-38940848

ABSTRACT

Gastric ulcer disease remains one of the common medical burdens affecting millions worldwide due to its prevalent risk factors with the chronic usage of non-steroidal anti-inflammatory drugs at the top, reportedly through the stimulation of oxidative stress and triggering of inflammatory and apoptotic cascades in the gastric mucosa. Astaxanthin, a dietary keto-carotenoid derived from marine organisms is gaining a wide interest as a nutraceutical for its pronounced antioxidant properties. Here, we aim to examine the potential modulatory role of astaxanthin on indomethacin-induced gastric ulceration in experimental mice. Twenty-four Swiss albino mice were randomly distributed into four groups: a control group, an indomethacin group, and two groups pre-treated with either omeprazole or astaxanthin. The gastric tissues were assessed using gross morphology, ulcer scoring, gastric juice acidity, as well as reduced glutathione (GSH) and malondialdehyde (MDA) levels. Histopathological examination and immunostaining for nuclear factor-kappa B (NF-κB) and caspase-3 levels were also employed. Indomethacin group tended to show a higher number of mucosal ulcerations relative to control and pre-treated groups. The indomethacin group also showed significantly lower GSH levels and higher MDA levels relative to control. Immunostaining of gastric tissue sections showed a higher reactivity to NF-κB and caspase-3 in indomethacin group. Astaxanthin pre-treatment significantly elevated gastric juice pH, normalized GSH levels, and lowered the indomethacin-induced elevations in MDA, NF-κB, and caspase-3 levels. These results indicate that astaxanthin exhibits a comparable protective effect to omeprazole, against indomethacin-induced gastric ulceration. This anti-ulcerogenic effect could be mediated through its antioxidant, anti-inflammatory, and anti-apoptotic modulatory activities.

2.
Polymers (Basel) ; 15(14)2023 Jul 09.
Article in English | MEDLINE | ID: mdl-37514379

ABSTRACT

Photostabilization of functional polymeric materials is important for protection against aging and ultraviolet (UV) irradiation. There is, therefore, the impetus to modify polymers to increase their resistance to photodegradation and photooxidation on extended exposure to UV light in harsh conditions. Various polymeric additives have been designed and synthesized in recent years, and their potential as photostabilizers has been explored. Reported here is the effect of pendant functionalization of poly(methyl methacrylate) (PMMA) through organometallic moiety incorporation into the polymer's backbone. The reaction of PMMA with ethylenediamine leads to the formation of an amino residue that can react with salicylaldehyde to produce the corresponding Schiff base. Adding metal chlorides (zinc, copper, nickel, and cobalt) led to the formation of organometallic residues on the polymeric chains. Thin films of modified and unmodified PMMA were produced and irradiated with UV light to determine the effect of pendant modification on photostability. The photostabilization of PMMA was assessed using a range of methods, including infrared spectroscopy, weight loss, decomposition rate constant, and surface morphology. The modified PMMA incorporating organic Schiff base metal complexes showed less photodecomposition than the unmodified polymer or one containing the Schiff base only. Thus, the metals significantly reduced the photodegradation of polymeric materials. The polymer containing the Schiff base-cobalt unit showed the least damage in the PMMA surface due to photoirradiation, followed by those containing nickel, zinc, and copper, in that order.

3.
Polymers (Basel) ; 15(3)2023 Jan 20.
Article in English | MEDLINE | ID: mdl-36771851

ABSTRACT

Poly(vinyl chloride), PVC, has many attractive properties, including low cost of manufacture, resistance to acid and alkali corrosion, and ease of molding. However, PVC suffers from aging in harsh conditions, leading to the shortening of its useful life. Stability to irradiation, for example, can be improved through the incorporation of additives to PVC. The design, synthesis, and application of new stabilizers continue to attract attention. The current work investigates the effect of three tin-cephalexin complexes on the stability of PVC on irradiation with ultraviolet (UV) light (λ = 313 nm) at 25 °C for a long duration. The PVC was blended with tin-cephalexin complexes at low concentrations (0.5% by weight), and thin films (around 40 µm) were made from the mixed materials. Various methods, including weight loss, infrared spectroscopy, and surface inspection of irradiated films were used to investigate the role played by these additives in the inhibition of PVC photodecomposition. The results confirmed that the additives led to a significant reduction in the rate of photodecomposition of the PVC blends. Tin-cephalexin complexes can absorb harmful radiation, deactivate hydrogen chloride, and scavenge high-energy species such as peroxides, therefore acting as stabilizers for PVC.

4.
Polymers (Basel) ; 14(21)2022 Oct 28.
Article in English | MEDLINE | ID: mdl-36365583

ABSTRACT

Polyvinyl chloride (PVC) is a ubiquitous thermoplastic that is produced on an enormous industrial scale to meet growing global demand. PVC has many favorable properties and is used in various applications. However, photodecomposition occurs when harsh conditions, such as high temperatures in the presence of oxygen and moisture, are encountered. Thus, PVC is blended with additives to increase its resistance to deterioration caused by exposure to ultraviolet light. In the current research, five methyldopa-tin complexes were synthesized and characterized. The methyldopa-tin complexes were mixed with PVC at a concentration of 0.5% by weight, and thin films were produced. The capability of the complexes to protect PVC from irradiation was shown by a reduction in the formation of small residues containing alcohols, ketones, and alkenes, as well as in weight loss and in the molecular weight of irradiated polymeric blends. In addition, the use of the new additives significantly reduced the roughness factor of the irradiated films. The additives containing aromatic substituents (phenyl rings) were more effective compared to those comprising aliphatic substituents (butyl and methyl groups). Methyldopa-tin complexes have the ability to absorb radiation, coordinate with polymeric chains, and act as radical, peroxide, and hydrogen chloride scavengers.

5.
Polymers (Basel) ; 14(18)2022 Sep 06.
Article in English | MEDLINE | ID: mdl-36145863

ABSTRACT

Polyvinyl chloride (PVC) is a synthetic polymer with a wide range of applications with impact on our daily life. It can undergo photodegradation with toxic products that are hazardous to both human health and the environment. In addition, photodegradation shortens the useful lifetime of the material. Elongation of the effective lifespan of PVC is, therefore, a salient area of research. Recently, a lot of attention has been directed toward the design, preparation, and usage of new additives that are capable of reducing the photodecomposition of PVC. This work investigates the synthesis of new levofloxacin-tin complexes and their potential exploitation against the photodecomposition of PVC. Several levofloxacin-tin complexes have been synthesized, in high yields, by a simple procedure and characterized. The potential use of the additives as photostabilizers for PVC has been investigated through the determination of weight loss, molecular weight depression, formation of fragments containing carbonyl and alkene groups, and surface morphology of irradiated PVC films. The results show that the new additives are effective in reducing the photodegradation of PVC. The new levofloxacin-tin complexes act as absorbers of ultraviolet light and quenchers of highly reactive species such as free radicals produced during photodegradation. They are more effective photostabilizers compared with organotin complexes previously reported. The complexes containing aromatic substituents were more effective than those counterparts having aliphatic residues.

6.
Polymers (Basel) ; 14(14)2022 Jul 10.
Article in English | MEDLINE | ID: mdl-35890588

ABSTRACT

Polyvinyl chloride is used in the manufacturing of a wide range of products, but it is susceptible to degradation if exposed to high temperatures and sunlight. There is therefore a need to continuously explore the design, synthesis, and application of new and improved additives to reduce the photodegradation of polyvinyl chloride in harsh environments and for outdoor applications. This research investigates the use of new norfloxacin-tin complexes as additives to inhibit the photodegradation of polyvinyl chloride to make it last longer. Reactions between norfloxacin and substituted tin chlorides, in different molar ratios and in methanol under reflux conditions, gave the corresponding organotin complexes in high yields. The chemical structures of the synthesized complexes were established, and their effect on the photodegradation of polyvinyl chloride due to ultraviolet-visible irradiation was investigated. Norfloxacin-tin complexes were added to polyvinyl chloride at very low concentrations and homogenous thin films were made. The films were irradiated for a period of up to 300 h, and the damage that occurred was assessed using infrared spectroscopy, polymeric materials weight loss, depression in molecular weight, and surface inspection. The degree of photodegradation in the polymeric materials was much less in the blends containing norfloxacin-tin complexes compared to the case where no additives were used. The use of the additives leads to a reduction in photodegradation (e.g., a reduction in the formation of short-chain polymeric fragments, weight loss, average molecular weight depletion, and roughness factor) of irradiated polyvinyl chloride. The norfloxacin-tin complexes contain aromatic moieties (aryl and heterocycle), heteroatoms (nitrogen, oxygen, and fluorine), and an acidic center (tin atom). Therefore, they act as efficient photostabilizers by absorbing the ultraviolet radiation and scavenging hydrogen chloride, peroxides, and radical species, thereby slowing the photodegradation of polyvinyl chloride.

7.
Polymers (Basel) ; 14(5)2022 Mar 03.
Article in English | MEDLINE | ID: mdl-35267847

ABSTRACT

Polystyrene is a common thermoplastic and is produced in different shapes and forms. The scale of manufacture of polystyrene has grown over the years because of its numerous applications and low cost of production. However, it is flammable, brittle, has low resistance to chemicals, and is susceptible to photodegradation on exposure to ultraviolet radiation. There is therefore scope to improve the properties of polystyrene and to extend its useful lifetime. The current work reports the synthesis of organometallic complexes and investigates their use as photostabilizers for polystyrene. The reaction of excess ibuprofen sodium salt and appropriate metal chlorides in boiling methanol gave the corresponding complexes excellent yields. The organometallic complexes (0.5% by weight) were added to polystyrene and homogenous thin films were made. The polystyrene films blended with metal complexes were irradiated with ultraviolet light for extended periods of time and the stabilizing effects of the additives were assessed. The infrared spectroscopy, weight loss, depression in molecular weight, and surface morphology of the irradiated blends containing organometallic complexes were investigated. All the synthesized organometallic complexes acted as photostabilizers for polystyrene. The damage (e.g., formation of small polymeric fragments, decrease in weight and molecular weight, and irregularities in the surface) that took place in the polystyrene blends was much lower in comparison to the pure polystyrene film. The manganese-containing complex was very effective in stabilizing polystyrene and was superior to cobalt and nickel complexes.

8.
Polymers (Basel) ; 13(22)2021 Nov 15.
Article in English | MEDLINE | ID: mdl-34833244

ABSTRACT

Poly(vinyl chloride) suffers from degradation through oxidation and decomposition when exposed to radiation and high temperatures. Stabilizers are added to polymeric materials to inhibit their degradation and enable their use for a longer duration in harsh environments. The design of new additives to stabilize poly(vinyl chloride) is therefore desirable. The current study includes the synthesis of new tin complexes of 4-methoxybenzoic acid and investigates their potential as photostabilizers for poly(vinyl chloride). The reaction of 4-methoxybenzoic acid and substituted tin chlorides gave the corresponding substituted tin complexes in good yields. The structures of the complexes were confirmed using analytical and spectroscopic methods. Poly(vinyl chloride) was doped with a small quantity (0.5%) of the tin complexes and homogenous thin films were made. The effects of the additives on the stability of the polymeric material on irradiation with ultraviolet light were assessed using different methods. Weight loss, production of small polymeric fragments, and drops in molecular weight were lower in the presence of the additives. The surface of poly(vinyl chloride), after irradiation, showed less damage in the films containing additives. The additives, in particular those containing aromatic (phenyl groups) substitutes, inhibited the photodegradation of polymeric films significantly. Such additives act as efficient ultraviolet absorbers, peroxide quenchers, and hydrogen chloride scavengers.

9.
Polymers (Basel) ; 13(19)2021 Sep 25.
Article in English | MEDLINE | ID: mdl-34641080

ABSTRACT

Poly(vinyl chloride) (PVC) is an important synthetic plastic that is produced in large quantities (millions of tons) annually. Additives to PVC are necessary to allow its use in many applications, particularly in harsh conditions. In regard to this, investigation of the synthesis of trimethoprim-tin complexes and their use as PVC additives is reported. Trimethoprim-tin complexes were obtained from the reaction of trimethoprim and tin chlorides using simple procedures. Trimethoprim-tin complexes (0.5% by weight) were added to PVC to produce homogenous mixtures and thin films were made. The effect of ultraviolet irradiation on the surface and properties of the PVC films was investigated. The level of both photodecomposition and photo-oxidation of PVC films containing trimethoprim-tin complexes was observed to be lower than for the blank film. The effectiveness of tin complexes as PVC photostabilizers reflects the aromaticity of the additives. The complex containing three phenyl groups attached to the tin cation showed the most stabilizing effect on PVC. The complex containing two phenyl groups was next, with the one containing butyl substituents resulting in the least stabilization of PVC. A number of mechanisms have been proposed to explain the role of the synthesized complexes in PVC photostabilization.

10.
Polymers (Basel) ; 13(17)2021 Sep 02.
Article in English | MEDLINE | ID: mdl-34503022

ABSTRACT

The scale of production of polystyrene has escalated in the recent past in order to meet growing demand. As a result, a large quantity of polystyrene waste continues to be generated along with associated health and environmental problems. One way to tackle such problems is to lengthen the lifetime of polystyrene, especially for outdoor applications. Our approach is the synthesis and application of new ultraviolet photostabilizers for polystyrene and this research is focused on four cephalexin Schiff bases. The reaction of cephalexin and 3-hydroxybenzaldehyde, 4-dimethylaminobenzaldehyde, 4-methoxybenzaldehyde, and 4-bromobanzaldehyde under acidic condition afforded the corresponding Schiff bases in high yields. The Schiff bases were characterized and their surfaces were examined. The Schiff bases were mixed with polystyrene to form homogenous blends and their effectiveness as photostabilizers was explored using different methods. The methods included monitoring the changes in the infrared spectra, weight loss, depression in molecular weight, and surface morphology on irradiation. In the presence of the Schiff bases, the formation of carbonyl group fragments, weight loss, and decrease in molecular weight of polystyrene were lower when compared with pure polystyrene. In addition, undesirable changes in the surface such as the appearance of dark spots, cracks, and roughness were minimal for irradiated polystyrene containing cephalexin Schiff bases. Mechanisms by which cephalexin Schiff bases stabilize polystyrene against photodegradation have also been suggested.

11.
Polymers (Basel) ; 13(15)2021 Jul 23.
Article in English | MEDLINE | ID: mdl-34372037

ABSTRACT

Poly(vinyl chloride) (PVC) suffers from photo-oxidation and photodegradation when exposed to harsh conditions. Application of PVC thus relies on the development of ever more efficient photostabilizers. The current research reports the synthesis of new complexes of tin and their assessment as poly(vinyl chloride) photostabilizers. The three new complexes were obtained in high yields from reaction of 4-(benzylideneamino)benzenesulfonamide and tin chlorides. Their structures were elucidated using different tools. The complexes were mixed with poly(vinyl chloride) at a very low concentration and thin films were made from the blends. The effectiveness of the tin complexes as photostabilizers has been established using a variety of methods. The new tin complexes led to a decrease in weight loss, formation of small residues, molecular weight depression, and surface alteration of poly(vinyl chloride) after irradiation. The additives act by absorption of ultraviolet light, removal the active chlorine produced through a dehydrochlorination process, decomposition of peroxides, and coordination with the polymeric chains. The triphenyltin complex showed the greatest stabilizing effect against PVC photodegradation as a result of its high aromaticity.

12.
Molecules ; 26(12)2021 Jun 14.
Article in English | MEDLINE | ID: mdl-34198519

ABSTRACT

Poly(vinyl chloride) degrades when exposed to ultraviolet light for long durations; therefore, the photostability of polymeric materials should be enhanced through the application of additives. New organotin complexes containing 4-aminonaphthalene-1-sulfonic acid were synthesized and their role as poly(vinyl chloride) photostabilizers were evaluated. The reaction of 4-amino-3-hydroxynaphthalene-1-sulfonic acid and appropriate di- or trisubstituted tin chloride (triphenyltin chloride, tributyltin chloride, dibutyltin dichloride, and dimethyltin dichloride) in methanol under reflux gave the corresponding tin-naphthalene complexes with yields of 75%-95%. Elemental analyses and spectroscopic techniques including infrared and nuclear magnetic resonance (proton and tin) were used to confirm their structures. The tin complexes were added to poly(vinyl chloride) to produce thin films that irradiated with ultraviolet light. Various parameters were assessed, such as the weight loss, formation of specific functional groups, changes in the surface due to photoirradiation, and rate constant of photodegradation, to test the role played by the organotin complexes to reduce photodegradation in polymeric films. The results proved that organotin complexes acted as photostabilizers in these circumstances. The weight loss, formation of fragments containing specific functional groups, and undesirable changes in the surface of polymeric films were limited in the presence of organotin complexes. Organotin complexes containing three phenyl groups showed the most desirable stabilization effect. These act as efficient primary and secondary photostabilizers, and as decomposers for peroxides. In addition, such an additive inhibits the dehydrochlorination process, which is the main cause of poly(vinyl chloride) photodegradation.

13.
Polymers (Basel) ; 13(4)2021 Feb 06.
Article in English | MEDLINE | ID: mdl-33561971

ABSTRACT

Poly(vinyl chloride) (PVC) undergoes photodegradation induced by ultraviolet (UV) irradiation; therefore, for outdoor applications, its photostability should be enhanced through the use of additives. Several carvedilol tin complexes were synthesized, characterized and mixed with PVC to produce thin films. These films were irradiated at 25 °C with a UV light (λ = 313 nm) for up to 300 h. The reduction in weight and changes in chemical structure and surface morphology of the PVC films were monitored. The films containing synthesized complexes showed less undesirable changes than the pure PVC film. Organotin with a high content of aromatics was particularly efficient in inhibiting photodegradation of PVC. The carvedilol tin complexes both absorbed UV light and scavenged radicals, hydrochloride, and peroxides and, therefore, photostabilized PVC.

14.
Polymers (Basel) ; 14(1)2021 Dec 22.
Article in English | MEDLINE | ID: mdl-35012042

ABSTRACT

The photooxidative degradation process of plastics caused by ultraviolet irradiation leads to bond breaking, crosslinking, the elimination of volatiles, formation of free radicals, and decreases in weight and molecular weight. Photodegradation deteriorates both the mechanical and physical properties of plastics and affects their predicted life use, in particular for applications in harsh environments. Plastics have many benefits, while on the other hand, they have numerous disadvantages, such as photodegradation and photooxidation in harsh environments and the release of toxic substances due to the leaching of some components, which have a negative effect on living organisms. Therefore, attention is paid to the design and use of safe, plastic, ultraviolet stabilizers that do not pose a danger to the environment if released. Plastic ultraviolet photostabilizers act as efficient light screeners (absorbers or pigments), excited-state deactivators (quenchers), hydroperoxide decomposers, and radical scavengers. Ultraviolet absorbers are cheap to produce, can be used in low concentrations, mix well with polymers to produce a homogenous matrix, and do not alter the color of polymers. Recently, polyphosphates, Schiff bases, and organometallic complexes were synthesized and used as potential ultraviolet absorbers for polymeric materials. They reduced the damage caused by accelerated and natural ultraviolet aging, which was confirmed by inspecting the surface morphology of irradiated polymeric films. For example, atomic force microscopy revealed that the roughness factor of polymers' irradiated surfaces was improved significantly in the presence of ultraviolet absorbers. In addition, the investigation of the surface of irradiated polymers using scanning electron microscopy showed a high degree of homogeneity and the appearance of pores that were different in size and shape. The current work surveys for the first time the use of newly synthesized, ultraviolet absorbers as additives to enhance the photostability of polymeric materials and, in particular, polyvinyl chloride and polystyrene, based mainly on our own recent work in the field.

15.
Polymers (Basel) ; 12(12)2020 Dec 06.
Article in English | MEDLINE | ID: mdl-33291282

ABSTRACT

The lifetime of poly(vinyl chloride) (PVC) can be increased through the addition of additives to provide protection against irradiation. Therefore, several new tin complexes containing atenolol moieties were synthesized and their photostabilizing effect on PVC was investigated. Reacting atenolol with a number of tin reagents in boiling methanol provided high yields of tin complexes. PVC was then mixed with the tin complexes at a low concentration, producing polymeric thins films. The films were irradiated with ultraviolet light and the resulting damage was assessed using different analytical and surface morphology techniques. Infrared spectroscopy and weight loss determination indicated that the films incorporating tin complexes incurred less damage and less surface changes compared to the blank film. In particular, the triphenyltin complex was very effective in enhancing the photostability of PVC, and this is due to its high aromaticity (three phenyl rings) compared to other complexes. Such an additive acts as a hydrogen chloride scavenger, radical absorber, and hydroperoxide decomposer.

16.
Polymers (Basel) ; 12(4)2020 Apr 21.
Article in English | MEDLINE | ID: mdl-32326307

ABSTRACT

Poly(vinyl chloride) is a common plastic that is widely used in many industrial applications. Poly(vinyl chloride) is mixed with additives to improve its mechanical and physical properties and to enable its use in harsh environments. Herein, to protect poly(vinyl chloride) films against photoirradiation with ultraviolet light, a number of tin complexes containing valsartan were synthesized and their chemical structures were established. Fourier-transform infrared spectroscopy, weight loss, and molecular weight determination showed that the non-desirable changes were lower in the films containing the tin complexes than for the blank polymeric films. Analysis of the surface morphology of the irradiated polymeric materials showed that the films containing additives were less rough than the irradiated blank film. The tin complexes protected the poly(vinyl chloride) films against irradiation, where the complexes with high aromaticity were particularly effective. The additives act as primary and secondary stabilizers that absorb the incident radiation and slowly remit it to the polymeric chain as heat energy over time at a harmless level.

17.
Polymers (Basel) ; 12(1)2020 Jan 10.
Article in English | MEDLINE | ID: mdl-31936894

ABSTRACT

Three new polyphosphates were synthesized in good yields by reacting diethylenetriamine with the appropriate phosphate ester in ethanol under acidic conditions. The polyphosphate structures were determined using FT-IR and 1H-NMR spectroscopies, and their elemental compositions were confirmed by EDX spectroscopy. Polyphosphates were added to poly(vinyl chloride) (PVC) at low concentrations to fabricate thin films. The PVC films were irradiated with ultraviolet light for long periods, and the effect of polyphosphates as the photostabilizer was investigated by determining changes in the infrared spectra (intensity of specific functional group peaks), reduction in molecular weight, weight loss, and surface morphology. Minimal changes were seen for PVC films containing polyphosphate compared to that for the blank film. In addition, optical, scanning electron, and atomic force microscopies were used to inspect the surface morphology of films. Undesirable changes due to photodegradation were negligible in PVC films containing additives compared to films containing no additives. In addition, the surfaces were smoother and more homogeneous. Polyphosphates, and in particular ones that contain an ortho-geometry, act as efficient photostabilizers to reduce the rate of photodegradation. Polyphosphates absorb ultraviolet light, chelate with polymeric chains, scavenge radical moieties, and decompose peroxide residues.

18.
Molecules ; 24(19)2019 Oct 01.
Article in English | MEDLINE | ID: mdl-31581427

ABSTRACT

Poly(vinyl chloride) (PVC), a polymer widely used in common household and industrial materials, undergoes photodegradation upon ultraviolet irradiation, leading to undesirable physicochemical properties and a reduced lifetime. In this study, four telmisartan organotin(IV) compounds were tested as photostabilizers against photodegradation. PVC films (40-µm thickness) containing these compounds (0.5 wt%) were irradiated with ultraviolet light at room temperature for up to 300 h. Changes in various polymeric parameters, including the growth of hydroxyl, carbonyl, and alkene functional groups, weight loss, reduction in molecular weight, and appearance of surface irregularities, were investigated to test the efficiency of the photostabilizers. The changes were more noticeable in the blank PVC film than in the films containing the telmisartan organotin(IV) compounds. These results reflect that these compounds effectively inhibit the photodegradation of PVC, possibly by acting as hydrogen chloride and radical scavengers, peroxide decomposers, and primary photostabilizers. The synthesized organotin(IV) complexes could be used as PVC additives to enhance photostability.


Subject(s)
Organotin Compounds/chemical synthesis , Polyvinyl Chloride/chemistry , Telmisartan/chemistry , Hydrochloric Acid/chemistry , Molecular Structure , Molecular Weight , Organotin Compounds/chemistry , Photolysis , Spectroscopy, Fourier Transform Infrared
19.
Environ Sci Pollut Res Int ; 26(25): 26381-26388, 2019 Sep.
Article in English | MEDLINE | ID: mdl-31290046

ABSTRACT

A new Schiff base containing 1,2,4-triazole ring system (L) was synthesized and confirmed by 1HNMR, FTIR spectroscopy. The chemical modification of PVC with a new Schiff base (L) was synthesized to produce a homogenous blend (PVC-L). A homogenous blend (PVC-L) was added to copper chloride to produce PVC-L-Cu (II). The PVC films had been irradiated with ultraviolet light for a long period and confirmed by FTIR spectroscopy and weight loss; the surface morphology was inspected by scanning electron microscopy.


Subject(s)
Polyvinyl Chloride/chemistry , Triazoles/chemistry , Copper/chemistry , Magnetic Resonance Spectroscopy , Microscopy, Electron, Scanning , Schiff Bases , Spectroscopy, Fourier Transform Infrared , Ultraviolet Rays
20.
Molecules ; 24(13)2019 Jun 28.
Article in English | MEDLINE | ID: mdl-31261834

ABSTRACT

As poly(vinyl chloride) (PVC) photodegrades with long-term exposure to ultraviolet radiation, it is desirable to develop methods that enhance the photostability of PVC. In this study, new aromatic-rich diorganotin(IV) complexes were tested as photostabilizers in PVC films. The diorganotin(IV) complexes were synthesized in 79-86% yields by reacting excess naproxen with tin(IV) chlorides. PVC films containing 0.5 wt % diorganotin(IV) complexes were irradiated with ultraviolet light for up to 300 h, and changes within the films were monitored using the weight loss and the formation of specific functional groups (hydroxyl, carbonyl, and polyene). In addition, changes in the surface morphologies of the films were investigated. The diorganotin(IV) complexes enhanced the photostability of PVC, as the weight loss and surface roughness were much lower in the films with additives than in the blank film. Notably, the dimethyltin(IV) complex was the most efficient photostabilizer. The polymeric film containing this complex exhibited a morphology of regularly distributed hexagonal pores, with a honeycomb-like structure-possibly due to cross-linking and interactions between the additive and the polymeric chains. Various mechanisms, including direct absorption of ultraviolet irradiation, radical or hydrogen chloride scavenging, and polymer chain coordination, could explain how the diorganotin(IV) complexes stabilize PVC against photodegradation.


Subject(s)
Naproxen/chemistry , Organotin Compounds/chemistry , Polyvinyl Chloride/chemical synthesis , Membranes, Artificial , Molecular Structure , Photolysis , Polyvinyl Chloride/chemistry , Surface Properties , Ultraviolet Rays
SELECTION OF CITATIONS
SEARCH DETAIL
...