Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Biomed Pharmacother ; 150: 112962, 2022 Jun.
Article in English | MEDLINE | ID: mdl-35462331

ABSTRACT

Low curability of patients diagnosed with acute myeloid leukemia (AML) must be seen as a call for better understanding the disease's mechanisms and improving the treatment strategy. Therapeutic outcome of the crucial anthracycline-based induction therapy often can be compromised by a resistant phenotype associated with overexpression of ABCB1 transporters. Here, we evaluated clinical relevance of ABCB1 in a context of the FMS-like tyrosine kinase 3 (FLT3) inhibitor midostaurin in a set of 28 primary AML samples. ABCB1 gene expression was absolutely quantified, confirming its association with CD34 positivity, adverse cytogenetic risk, and unachieved complete remission (CR). Midostaurin, identified as an ABCB1 inhibitor, increased anthracycline accumulation in peripheral blood mononuclear cells (PBMC) of CD34+ AML patients and those not achieving CR. This effect was independent of FLT3 mutation, indicating even FLT3- AML patients might benefit from midostaurin therapy. In line with these data, midostaurin potentiated proapoptotic processes in ABCB1-overexpressing leukemic cells when combined with anthracyclines. Furthermore, we report a direct linkage of miR-9 to ABCB1 efflux activity in the PBMC and propose miR-9 as a useful prognostic marker in AML. Overall, we highlight the therapeutic value of midostaurin as more than just a FLT3 inhibitor, suggesting its maximal therapeutic outcomes might be very sensitive to proper timing and well-optimized dosage schemes based upon patient's characteristics, such as CD34 positivity and ABCB1 activity. Moreover, we suggest miR-9 as a predictive ABCB1-related biomarker that could be immensely helpful in identifying ABCB1-resistant AML phenotype to enable optimized therapeutic regimen and improved treatment outcome.


Subject(s)
ATP Binding Cassette Transporter, Subfamily B , Leukemia, Myeloid, Acute , MicroRNAs , Staurosporine , ATP Binding Cassette Transporter, Subfamily B/genetics , ATP Binding Cassette Transporter, Subfamily B/metabolism , Anthracyclines/pharmacology , Humans , Leukemia, Myeloid, Acute/drug therapy , Leukemia, Myeloid, Acute/genetics , Leukemia, Myeloid, Acute/metabolism , Leukocytes, Mononuclear/drug effects , Leukocytes, Mononuclear/metabolism , MicroRNAs/genetics , MicroRNAs/metabolism , Mutation , Protein Kinase Inhibitors/pharmacology , Staurosporine/analogs & derivatives , Staurosporine/pharmacology
2.
Toxicol Appl Pharmacol ; 434: 115797, 2022 01 01.
Article in English | MEDLINE | ID: mdl-34780725

ABSTRACT

Dabrafenib is a BRAF inhibitor used in combination treatment of malignant melanoma and non-small cell lung carcinoma. In this study, we aimed to characterize its interactions with cytochrome P450 (CYP) isoenzymes and ATP-binding cassette (ABC) efflux transporters that have critical impact on the pharmacokinetics of drugs and play a role in drug resistance development. Using accumulation assays, we showed that dabrafenib inhibited ABCG2 and, less potently, ABCB1 transporter. We also confirmed dabrafenib as a CYP2C8, CYP2C9, CYP3A4, and CYP3A5 inhibitor. Importantly, inhibition of ABCG2 and CYP3A4 by dabrafenib led to the potentiation of cytotoxic effects of mitoxantrone and docetaxel toward respective resistant cell lines in drug combination studies. On the contrary, the synergistic effect was not consistently observed in ABCB1-expressing models. We further demonstrated that mRNA levels of ABCB1, ABCG2, ABCC1, and CYP3A4 were increased after 24 h and 48 h exposure to dabrafenib. Overall, our data confirm dabrafenib as a drug frequently and potently interacting with ABC transporters and CYP isoenzymes. This feature should be addressed with caution when administering dabrafenib to patients with polypharmacy but also could be utilized advantageously when designing new dabrafenib-containing drug combinations to improve the therapeutic outcome in drug-resistant cancer.


Subject(s)
ATP Binding Cassette Transporter, Subfamily G, Member 2/antagonists & inhibitors , Antineoplastic Agents/pharmacology , Cytochrome P-450 Enzyme Inhibitors/pharmacology , Daunorubicin/pharmacology , Imidazoles/pharmacokinetics , Mitoxantrone/pharmacology , Oximes/pharmacokinetics , ATP Binding Cassette Transporter, Subfamily B, Member 1/antagonists & inhibitors , ATP Binding Cassette Transporter, Subfamily B, Member 1/genetics , ATP Binding Cassette Transporter, Subfamily B, Member 1/metabolism , ATP Binding Cassette Transporter, Subfamily G, Member 2/genetics , ATP Binding Cassette Transporter, Subfamily G, Member 2/metabolism , Animals , Antineoplastic Agents/administration & dosage , Cell Line, Tumor , Cytochrome P-450 CYP3A/genetics , Cytochrome P-450 CYP3A/metabolism , Cytochrome P-450 Enzyme Inhibitors/administration & dosage , Daunorubicin/administration & dosage , Dogs , Drug Therapy, Combination , Gene Expression Regulation/drug effects , Humans , Imidazoles/administration & dosage , Mitoxantrone/administration & dosage , Oximes/administration & dosage , RNA, Messenger/genetics , RNA, Messenger/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...