Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
J Chem Inf Model ; 63(22): 7219-7227, 2023 Nov 27.
Article in English | MEDLINE | ID: mdl-37939386

ABSTRACT

Allostery is involved in innumerable biological processes and plays a fundamental role in human disease. Thus, the exploration of allosteric modulation is crucial for research on biological mechanisms and in the development of novel therapeutics. The development of small-molecule allosteric effectors can be used as tools to probe biological mechanisms of interest. One of the main limitations in targeting allosteric sites is the difficulty in uncovering them for specific receptors. Furthermore, upon discovery of novel allosteric modulation, early lead generation is made more difficult as compared to that at orthosteric sites because there is likely no information about the types of molecules that can bind at the site. In the work described here, we present a novel drug discovery pipeline, FASTDock, which allows one to uncover ligandable sites as well as small molecules that target the given site without requiring pre-existing knowledge of ligands that can bind in the targeted site. By using a hierarchical screening strategy, this method has the potential to enable high-throughput screens of an exceptionally large database of targeted ligand space.


Subject(s)
Drug Discovery , Humans , Allosteric Regulation , Allosteric Site , Drug Discovery/methods , Ligands
2.
J Phys Chem B ; 127(14): 3139-3150, 2023 04 13.
Article in English | MEDLINE | ID: mdl-36989346

ABSTRACT

Cyclophilins are ubiquitous human enzymes that catalyze peptidyl-prolyl cis-trans isomerization in protein substrates. Of the 17 unique isoforms, five closely related isoforms (CypA-E) are found in various environments and participate in diverse cellular processes, yet all have similar structures and the same core catalytic function. The question is what key residues are behind the conserved function of these enzymes. Here, conformational dynamics are compared across these isoforms to detect conserved dynamics essential for the catalytic activity of cyclophilins. A set of key dynamic residues, defined by the most dynamically conserved positions, are identified in the gatekeeper 2 region. The highly conserved glycine (Gly80) in this region is predicted to underlie the local flexibility, which is further tested by molecular dynamics simulations performed on mutants (G80A) of CypE and CypA. The mutation leads to decreased flexibility of CypE and CypA during substrate binding but increased flexibility during catalysis. Dynamical changes occur in the mutated region and a distal loop downstream of the mutation site in sequence. Examinations of the mutational effect on catalysis show that both mutated CypE and CypA exhibit shifted binding free energies of the substrate under distinct isomer conformations. The results suggest a loss of function in the mutated CypE and CypA. These catalytic changes by the mutation are likely independent of the substrate sequence, at least in CypA. Our work presents a method to identify function-related key residues in proteins.


Subject(s)
Cyclophilins , Proteins , Humans , Protein Conformation , Molecular Dynamics Simulation , Catalysis
SELECTION OF CITATIONS
SEARCH DETAIL
...