Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Heliyon ; 10(7): e29014, 2024 Apr 15.
Article in English | MEDLINE | ID: mdl-38633632

ABSTRACT

The present global environment is facing growing issues linked to production of concrete, mostly due to high consumption of concrete as the dominating construction material globally. In today's climate of environmental sustainability, recycled concrete production using RA (recycled aggregates) requires a more holistic approach. This study examined how recycled aggregate (RA), metakaolin, silica fume and fly ash affect mechanical characteristics (compressive strength, split tensile strength), and durability characteristics (acid resistance, absorption, sorptivity) of concrete. The objective of this investigation is to figure out how the potential of RA based concrete can be improved so that they can be used to their maximum extent. To achieve the desired outcome, the study involved testing three distinct groups of concrete samples, each containing different percentages (25%, 50%, and 75%) of recycled aggregate (RA) with a constant amount of silica fume, (25 kg/m3). The first group was used as the control mix, while the second group incorporated 10% fly ash, and the third group included 15% metakaolin. The findings of this research show that the RA concrete mechanical properties as well as durability can be significantly improved by incorporating 15% metakaolin and 10% fly ash. The investigation involves the examination of all ternary blends within two distinct acidic environments, specifically a 5% hydrochloric acid (HCl) solution and sulfuric acid (H2SO4). Both the ternary mixes (metakaolin and fly ash) with the combination of silica improve all characteristics. The quality assurance, cost analysis and the reduction of CO2 emissions are carried out, utilizing RA (recycled aggregates) as a substitute for NA (natural aggregate). In case of producing superior structural concrete, it is recommended based on results to limit the replacement percentage of recycled aggregate (RA) to a maximum of 50% in presence of 10% fly ash and 15% metakaolin, otherwise the RA replacement percentage should not be more than 25%.

2.
Materials (Basel) ; 15(7)2022 Apr 02.
Article in English | MEDLINE | ID: mdl-35407948

ABSTRACT

The issue of brittleness and low post-peak load energy associated with the plain HSC led to the development of fiber-reinforced concrete (FRC) by using discrete fiber filaments in the plain matrix. Due to the high environmental impact of industrial fibers and plasticizers, FRC development is ecologically challenged. Sustainability issues demand the application of eco-friendly development of FRC. This study is aimed at the evaluation of coir as a fiber-reinforcement material in HSC, with the incorporation of silica fume as a partial replacement of cement. For this purpose, a total of 12 concrete mixes were produced by using three different doses of coir (0%, 1%, 1.5%, and 2% by wt. of binder) with silica fume (0%, 5%, and 10% as volumetric replacements of cement). The examined parameters include compressive strength, shear strength, splitting tensile strength, ultrasonic pulse velocity, water absorption, and chloride ion permeability. The scanning electron microscopy (SEM) technique was adopted to observe the microstructure of the CF-reinforced concrete. The results revealed that due to the CF addition, the compressive strength of HSC reduces notably; however, the splitting tensile strength and shear strength experienced notable improvements. At the combined incorporation of 1.5% CF with 5% silica fume, the splitting tensile strength and shear strength of the concrete experienced improvements of 47% and 70%, respectively, compared to that of the control mix. The CF incorporation is detrimental to the imperviousness of concrete. The combined incorporation of CF and silica fume is recommended to minimize the negative effects of CF on the permeability resistance of concrete. The SEM results revealed that CF underwent a minor shrinkage with the age.

3.
Materials (Basel) ; 15(5)2022 Feb 24.
Article in English | MEDLINE | ID: mdl-35268924

ABSTRACT

Heat-induced spalling in concrete is a problem that has been the subject of intense debate. The research community has, despite all the effort invested in this problem, few certain and definitive answers regarding the causes of and the way in which spalling happens. A major reason for this difficulty is the lack of a unified method for testing, which makes comparing data from various studies against each other a difficult task. Many studies have been performed that show the positive effects of using synthetic micro-fibres, such as polypropylene (PP). The mechanism with which PP fibres improve heat-induced spalling resistance in concrete, however, remains a subject of debate. This paper, therefore, looks at the work that has been performed in the field of spalling (particularly spalling of self-compacting concrete (SCC)). Influencing factors are identified and their links to each other (as reported) are discussed. A particular emphasis is put on discussing the role of PP fibres and how they improve the behaviour of high-performance concrete (HPC) at elevated temperatures. A brief summary of the reviewed papers are provided for each of the influencing factors to help the reader navigate with ease through the references. An introduction to heat-induced spalling and the common causes (as reported in the literature) is also included to highlight the wide range of theories trying to explain the spalling phenomenon.

4.
Materials (Basel) ; 14(4)2021 Feb 19.
Article in English | MEDLINE | ID: mdl-33669888

ABSTRACT

High-performance self-consolidating concrete is one of the most promising developments in the construction industry. Nowadays, concrete designers and ready-mix companies are seeking optimum concrete in terms of environmental impact, cost, mechanical performance, as well as fresh-state properties. This can be achieved by considering the mentioned parameters simultaneously; typically, by integrating conventional concrete systems with different types of high-performance waste mineral admixtures (i.e., micro-silica and fly ash) and ultra-high range plasticizers. In this study, fresh-state properties (slump, flow, restricted flow), hardened-state properties (density, water absorption by immersion, compressive strength, splitting tensile strength, flexural strength, stress-strain relationship, modulus of elasticity, oven heating test, fire-resistance, and freeze-thaw cycles), and cost of high-performance self-consolidating concrete (HPSCC) prepared with waste mineral admixtures, were examined and compared with three different reference mixes, including normal strength-vibrated concrete (NSVC), high-strength self-compacted concrete (HSSCC), and high-performance highly-viscous concrete (HPVC). Then, a multi parameter analytical approach was considered to identify the optimum concrete mix in terms of cost, workability, strength, and durability.

5.
Materials (Basel) ; 13(24)2020 Dec 16.
Article in English | MEDLINE | ID: mdl-33339297

ABSTRACT

For the efficient and durable design of concrete, the role of fiber-reinforcements with mineral admixtures needs to be properly investigated considering various factors such as contents of fibers and potential supplementary cementitious material. Interactive effects of fibers and mineral admixtures are also needed to be appropriately studied. In this paper, properties of concrete were investigated with individual and combined incorporation of steel fiber (SF) and micro-silica (MS). SF was used at six different levels i.e., low fiber volume (0.05% and 0.1%), medium fiber volume (0.25% and 0.5%) and high fiber volume (1% and 2%). Each volume fraction of SF was investigated with 0%, 5% and 10% MS as by volume of binder. All concrete mixtures were assessed based on the results of important mechanical and permeability tests. The results revealed that varying fiber dosage showed mixed effects on the compressive (compressive strength and elastic modulus) and permeability (water absorption and chloride ion penetration) properties of concrete. Generally, low to medium volume fractions of fibers were useful in advancing the compressive strength and elastic modulus of concrete, whereas high fiber fractions showed detrimental effects on compressive strength and permeability resistance. The addition of MS with SF is not only beneficial to boost the strength properties, but it also improves the interaction between fibers and binder matrix. MS minimizes the negative effects of high fiber doses on the properties of concrete.

6.
Materials (Basel) ; 13(21)2020 Oct 23.
Article in English | MEDLINE | ID: mdl-33114265

ABSTRACT

This paper presents a literature review concerning the characteristics of MgO (magnesium oxide or magnesia) and its application in cementitious materials. It starts with the characterization of MgO in terms of production processes, calcination temperatures, reactivity, and physical properties. Relationships between different MgO characteristics are established. Then, the influence of MgO incorporation on the properties of cementitious materials is investigated. The mechanical strength and durability behaviour of cement pastes, mortars and concrete mixes made with MgO are discussed. The studied properties of MgO-cement mixes include compressive strength, flexural strength, tensile strength, modulus of elasticity, water absorption, porosity, carbonation, chloride ion penetration, shrinkage, expansion, and hydration degree. In addition, microscopic analyses of MgO-cement mixes are also assessed. Summarizing the results of different studies, it is concluded that MgO incorporation in cementitious materials generally decreases the mechanical strength and shrinkage, and increases the porosity, expansion, carbonation and chloride ion migration. However, it should be emphasized that the properties of the specific MgO used (mainly the calcination temperature, the reactivity and the surface area) have a significant influence on the characteristics of the cementitious materials produced.

7.
Materials (Basel) ; 13(18)2020 Sep 16.
Article in English | MEDLINE | ID: mdl-32948035

ABSTRACT

Portland cement concrete is fragile in tension and it has numerous negative impacts on the environment. To deal with these issues, both fiber reinforcement and recycled materials can be utilized to manufacture sustainable and ductile concrete. In this study, the synergistic effects of high-performance mineral admixture silica fume and glass fiber reinforcement were investigated on the hardened properties of RC. For this purpose, two concrete mix families, namely, NC and RC were prepared. To understand the benefits of synergistic utilization of glass fiber and silica fume, in both NC and RC, 0.5% glass fiber was incorporated with three different levels of silica fume. i.e., 0%, 5%, and 10%. Both strength and permeability-related durability properties were investigated. Results revealed that combined incorporation of 0.5% fiber and 10% silica fume can help in the production of RC having better mechanical and durability performance compared to reference "NC". Simultaneous incorporation of silica fume and glass fiber produces a combined effect greater than their individual effects on both mechanical and permeability properties of concrete. Silica fume plays a very dominant and positive role in the development of CS, WA, and CIPR of RC, whereas glass fiber plays a vital role in upgrading STS and FS of RC and whereas, with the addition of 0.5% glass fiber, RC can yield 8-9 times higher flexural toughness than that of the plain NC.

SELECTION OF CITATIONS
SEARCH DETAIL
...