Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
Add more filters










Publication year range
1.
Article in English | MEDLINE | ID: mdl-38960893

ABSTRACT

OBJECTIVES: The study aimed to assess the effect of these biomarkers on a sample of children with autism spectrum disorder (ASD) to help in early diagnosis and intervention. METHODS: A total of 71 autistic patients and 65 normal controls were enrolled in this study. Their ages ranged from 5 to 11 years (mean ± SD 7.47 ± 3.81). Childhood Autism Rating Scale (CARS) was assessed for all patients and controls. Assessment of oxidative stress, monocyte chemoattractant protein-1, B-cell lymphoma 2, S-adenosylhomocysteine (SAH), and apelin was performed. RESULTS: Oxidative stress (oxidized low-density lipoprotein and malonaldehyde) increased while antioxidant paraoxonase (PON) decreased. Monocyte chemoattractant protein-1, B-cell lymphoma 2, and S-adenosylhomocysteine (SAH) were all elevated whereas, apelin was downregulated. CONCLUSIONS: It is important to note that many factors that may contribute to ASD including genetic factors. To open the door for novel treatment strategies, it is still necessary to precisely understand how oxidative stress, chemokines, apoptosis, and methylation capability affect the metabolism of people with ASD.

2.
J Exerc Sci Fit ; 22(4): 316-321, 2024 Oct.
Article in English | MEDLINE | ID: mdl-38765321

ABSTRACT

Background/objective: Post-COVID-19 subjects typically experience symptoms of fatigue, cognitive impairment, and sleep difficulty, which can be relieved by conventional aerobic exercise. Virtual Reality (VR) technology to support conventional exercise has recently gained much attention. Therefore, this study aimed to assess the effects of traditional treadmill exercise compared to virtual reality-simulated treadmill exercise on fatigue, cognitive function, sleep quality, and participant satisfaction with the exercise program in post-COVID-19 subjects. Methods: This single-centered, randomized, parallel-group intervention study was conducted between December 2021 and March 2022. Sixteen of twenty post-COVID-19 subjects completed this study (n1 = 8, n2 = 8). Inclusion criteria were persistent dyspnea/fatigue, mild cognitive problems, and age from 30-60 years. Exclusion criteria were previous severe COVID-19 infection and ICU admission, concomitant respiratory or cardiovascular disease, and musculoskeletal or neurological disease. Eligible subjects were assigned randomly to two groups: a non-VR group that received traditional treadmill aerobic exercise only and a VR group that received treadmill exercise with non-immersive VR. Both groups received moderate-intensity exercise on a treadmill at [50-60 % (peak HR-resting HR) + resting HR] for 30-45 min, three times per week, and for four weeks. The outcome measures were the Chalder Fatigue Scale, Montreal Cognitive Assessment (MoCA) questionnaire, Pittsburgh Sleep Quality Index (PSQI), and participant satisfaction with the exercise program rated on a 5-point Likert scale. Results: Both groups showed significant improvements in the Chalder Fatigue Scale, the MoCA questionnaire, and the PSQI scores after training compared to baseline (p < 0.05), without significant differences between them (p > 0.05). However, participant satisfaction with the exercise program was significantly higher in the VR group than in the non-VR group (p = 0.037). Conclusion: A moderate-intensity 4-week treadmill exercise program with and without non-immersive VR may improve fatigue, cognitive function, and sleep quality to the same extent in COVID-19 survivors. However, participant satisfaction with the exercise program could be greater after conventional treadmill training assisted by non-immersive VR than after conventional treadmill training alone in this cohort. Trial registration: Pan African Clinical Trials Registry, PACTR202311561948428, retrospectively registered.

3.
Cureus ; 15(10): e47175, 2023 Oct.
Article in English | MEDLINE | ID: mdl-38022353

ABSTRACT

BACKGROUND: Changing lifestyles and food habits have an impact on both nutrient requirements and intake among adolescents. The aim of this study is to assess the level of knowledge, habits, practices, and the presence of food addiction among adolescents residing in Damanhur City. METHODS: A descriptive correlational study design is employed to collect data from 363 adolescents selected conveniently from two youth centers in Damanhur, Egypt. Four tools are used: a demographic questionnaire, the Adolescent Food Habits Checklist (AFHC), the General Nutritional Knowledge Assessment Questionnaire (GNKQ), and the Yale Food Addiction Scale version 2.0 (YFAS 2.0). RESULTS: The age of the participating adolescents ranges from 10 to 19 years. More than half of the participants (51.8%) reported choosing low-fat foods. Additionally, around one-third of the adolescents (34.7%) meet the diagnostic criteria for food addiction. However, there is no statistically significant association found between food addiction and adolescents' eating habits and practices. CONCLUSION AND RECOMMENDATIONS: Most of the studied adolescents exhibit unhealthy eating practices. Food addiction is identified as a significant health concern among this population. Therefore, it is highly recommended to provide nutritional education for adolescents and their families and implement school-based strategies to promote healthy eating habits.

4.
J Genet Eng Biotechnol ; 20(1): 142, 2022 Oct 06.
Article in English | MEDLINE | ID: mdl-36201094

ABSTRACT

BACKGROUND: Acetaminophen (APAP) overdose is a common cause of hepatotoxicity. Antioxidants like N-acetyl cysteine are recommended as a therapeutic option; nevertheless, it has limitations. The search for efficient alternatives is ongoing. Probiotics are live microorganisms that maintain a healthy gut microecology. Lactobacillus rhamnosus GG (LGG) is one of the widely used probiotics. Our study aimed to assess the protective and therapeutic effects of probiotic LGG on APAP-induced hepatotoxicity and evaluate the molecular pathways behind this effect. METHODS: Wistar Albino male rats were randomly distributed into the following experimental groups: group 1, non-treated rats (vehicle); group 2, rats received oral gavage of suspension of probiotic LGG (5 × 1010 CFU GG/0.5 ml in PBS) daily for 2 weeks (probiotic control); group 3, rats received APAP dose of 2 g/kg body weight (positive control); group 4, rats received oral gavage of suspension of probiotic LGG for 2 weeks followed by a single dose of APAP injection (prophylactic); and group 5, rats received a single dose of APAP and then 24 h later treated with oral gavage of probiotic LGG daily for 2 weeks (treatment). RESULTS: Our study revealed that administration of probiotic LGG (either as prophylactic or treatment) exhibited a remarkable reduction in APAP-induced liver injury as resembled by the decrease in liver enzymes (ALT and AST) and the histopathological features of liver sections. Moreover, the significant reduction in the oxidative marker malondialdehyde, along with the enhancement in glutathione reductase, and the significant reduction in inflammatory markers (nitric oxide and tumor necrosis factor-α) were all indicators of the efficiency of LGG in ameliorating the alterations accompanied with APAP-induced hepatotoxicity. Our findings also demonstrate that LGG administration boosted the expression of Nrf2 and PGC-1 while decreasing the expression of protein kinase C (PKC). As a result, the nuclear abundance of Nrf2 is increased, and the expression of various antioxidants is eventually upregulated. CONCLUSION: Our study shows that probiotic LGG supplementation exerts a prophylactic and therapeutic effect against APAP-induced hepatotoxicity through modulating the expression of PKC and the Nrf2/PGC-1α signaling pathway and eventually suppressing oxidative damage from APAP overdose.

5.
Luminescence ; 37(9): 1575-1584, 2022 Sep.
Article in English | MEDLINE | ID: mdl-35830768

ABSTRACT

Smart windows with long-persistent phosphorescence, ultraviolet (UV) light protection, high transparency, and high rigidity were developed by easily immobilizing varying ratios of lanthanide-activated aluminate phosphor nanoscale particles within a composite of recycled polyester/cellulose nanocrystals (RPET/CNC). Cellulose nanocrystals were prepared from rice straw waste. Cellulose nanocrystals were used at low concentration as both crosslinker and drier to improve both transparency and hardness. The phosphor nanoscale particles must be distributed into the recycled polyester/cellulose nanocrystals composite bulk without agglomeration to produce transparent RPET/CNC substrates. Photoluminescence characteristics were also studied using spectroscopic profiles of excitation/emission and decay/lifetime. The hardness efficiency was also examined. This transparent recycled polyester waste/cellulose nanocrystals nanocomposite smart window has been shown to change colour under UV light to strong green and to greenish-yellow when it is dark, as proved by Commission Internationale de l'éclairage (CIE) laboratory colour parameters. It was found that the afterglow RPET/CNC smart window had phosphorescence intensities of 428, 493, and 523 nm upon excitation at 368 nm. There was evidence of improved UV shielding, photostability, and hydrophobic activity. In the presence of a low phosphor ratio, the luminescent RPET/CNC substrates showed quick and reversible fluorescence photochromic activity when exposed to UV radiation.


Subject(s)
Nanocomposites , Nanoparticles , Cellulose/chemistry , Luminescence , Nanocomposites/chemistry , Nanoparticles/chemistry , Polyesters
6.
Odontology ; 110(3): 497-507, 2022 Jul.
Article in English | MEDLINE | ID: mdl-35064356

ABSTRACT

The objective of the study was to evaluate the effect of different restorative protocols on fracture resistance of root canal-treated molars. 48 mandibular first molars were used and divided into six groups (n = 8); G1 (negative control): teeth kept intact. G2 (positive control): teeth had root canal treatment and standard MOD cavity preparations but kept unrestored. G3: prepared as G2 and directly restored with VitaEnamic ceramic overlays (CO). G4: as G3, but the pulp chamber was restored first with smart dental restorative (SureFil SDR flow = SDR) bulk-fill flowable composite base. G5: as G3, but the pulp chamber was restored first with SonicFill (SF) bulk-fill composite base. G6: as G3, but the pulp chamber was restored first with a fiber-reinforced composite (FRC) base. All samples were subjected to thermocycling between 5 °C and 55 °C in a water bath for a total of 2000 cycles with 10 s dwell time. Then specimens were individually mounted on a computer-controlled testing machine with a load cell of 5 kN, and the maximum load to produce fracture (N) was recorded. Data were analyzed using one-way ANOVA followed by Tukey's post hoc test (P = 0.05). There was a significant difference between the groups (P < 0.001). Teeth restored with FRC and ceramic overlays had the highest load-bearing capacity. Pulp chamber restoration with either FRC or SDR before ceramic overlay fabrication provided significantly better tooth reinforcement than ceramic overlay alone (P < 0.001). Fracture modes were analyzed to determine the type of fracture as repairable or catastrophic, where FRC + CO and SDR + CO groups had favorable fracture modes that were mostly repairable. When restoring root canal-treated molars with overlays, the pulp chamber should be sealed with either FRC or SDR to ensure the best possible fracture resistance. The clinical relevance of the study is that a new simple restorative protocol is presented to enhance the survival of root canal-treated molars using ceramic overlays.


Subject(s)
Tooth Fractures , Tooth, Nonvital , Ceramics , Composite Resins , Dental Pulp Cavity , Dental Stress Analysis , Glass , Humans , Materials Testing , Molar , Tooth Fractures/prevention & control , Tooth, Nonvital/therapy
7.
Int J Mol Sci ; 22(18)2021 Sep 10.
Article in English | MEDLINE | ID: mdl-34575981

ABSTRACT

Macro-autophagy (autophagy) is a highly conserved eukaryotic intracellular process of self-digestion caused by lysosomes on demand, which is upregulated as a survival strategy upon exposure to various stressors, such as metabolic insults, cytotoxic drugs, and alcohol abuse. Paradoxically, autophagy dysfunction also contributes to cancer and aging. It is well known that regulating autophagy by targeting specific regulatory molecules in its machinery can modulate multiple disease processes. Therefore, autophagy represents a significant pharmacological target for drug development and therapeutic interventions in various diseases, including cancers. According to the framework of autophagy, the suppression or induction of autophagy can exert therapeutic properties through the promotion of cell death or cell survival, which are the two main events targeted by cancer therapies. Remarkably, natural products have attracted attention in the anticancer drug discovery field, because they are biologically friendly and have potential therapeutic effects. In this review, we summarize the up-to-date knowledge regarding natural products that can modulate autophagy in various cancers. These findings will provide a new position to exploit more natural compounds as potential novel anticancer drugs and will lead to a better understanding of molecular pathways by targeting the various autophagy stages of upcoming cancer therapeutics.


Subject(s)
Antineoplastic Agents/therapeutic use , Autophagy/drug effects , Biological Products/therapeutic use , Neoplasms/drug therapy , Autophagy/genetics , Drug Development , Humans , Lysosomes/drug effects , Lysosomes/genetics , Neoplasms/genetics
8.
Protein Expr Purif ; 188: 105965, 2021 12.
Article in English | MEDLINE | ID: mdl-34461217

ABSTRACT

BACKGROUND: Egypt has a high prevalence of hepatitis C virus (HCV) infection with 92.5% of genotype-4. AIM: This study aimed to clone and express the core gene of HCV genotype-4 for using it to develop a highly sensitive, specific, and cost-effective diagnostic assay for detecting HCV infection. METHODS: Using synthetic HCV genotype-4 core gene, pET15b as E. coli expression vector, and 1 mM lactose as inducer, the HCV core protein (MW 17 kDa) was expressed in the form of inclusion bodies (IBs) that was purified and solubilized using 8 M guanidinium HCl. The recombinant core protein was in vitro refolded by a rapid dilution method for further purification using weak cation exchange liquid chromatography. The immunogenicity of the purified protein was tested by ELISA using 129 serum samples. RESULTS: The recombinant core protein was successfully expressed and purified. The results also showed that the in-house anti-HCV core assay is accurate, specific (~96.6%), and highly sensitive (~100%) in accordance with the commercial ELISA kit. CONCLUSION: The sensitivity, specificity, and reproducibility of the developed assay were high and promising to be used as a screening assay for detecting HCV infection.


Subject(s)
Antibodies, Viral/blood , Antigens, Viral/genetics , Hepacivirus/genetics , Hepatitis C/diagnosis , Viral Core Proteins/genetics , Antigens, Viral/biosynthesis , Antigens, Viral/immunology , Antigens, Viral/isolation & purification , Chromatography, Ion Exchange/methods , Cloning, Molecular , Egypt/epidemiology , Enzyme-Linked Immunosorbent Assay , Escherichia coli/genetics , Escherichia coli/metabolism , Gene Expression , Genetic Vectors/chemistry , Genetic Vectors/metabolism , Genotype , Guanidine/chemistry , Hepacivirus/classification , Hepacivirus/immunology , Hepatitis C/epidemiology , Hepatitis C/virology , Humans , Immune Sera/chemistry , Inclusion Bodies/chemistry , Prevalence , Protein Refolding , Recombinant Proteins/biosynthesis , Recombinant Proteins/genetics , Recombinant Proteins/immunology , Recombinant Proteins/isolation & purification , Viral Core Proteins/biosynthesis , Viral Core Proteins/immunology , Viral Core Proteins/isolation & purification
9.
Eur J Pharmacol ; 887: 173461, 2020 Nov 15.
Article in English | MEDLINE | ID: mdl-32758573

ABSTRACT

Gut microbiota is a crucial factor in pathogenesis of non-alcoholic steatohepatitis (NASH). Therefore, targeting the gut-liver axis might be a novel therapeutic approach to treat NASH. This study aimed to investigate the therapeutic effects of a probiotic (Lactobacillus reuteri) and metronidazole (MTZ) (an antibiotic against Bacteroidetes) either alone or in combination with metformin (MTF) in experimentally-induced NASH. NASH was induced by feeding rats high fat diet (HFD) for 12 weeks. MTF (150 mg/kg/day) or L. reuteri (2x109 colony forming unit/day) were given orally for 8 weeks; meanwhile, MTZ (15 mg/kg/day, p.o.) was administered for 1 week. Treatment with L. reuteri and MTZ in combination with MTF showed additional benefit compared to MTF alone concerning lipid profile, liver function, oxidative stress, inflammatory and autophagic markers. Furthermore, combined regimen succeeded to modulate acetate: propionate: butyrate ratios as well as Firmicutes and Bacteroidetes fecal contents with improvement of insulin resistance (IR). Yet, the administration of MTF alone failed to normalize Bacteriodetes and acetate contents which could be the reason for its moderate effect. In conclusion, gut microbiota modulation may be an attractive therapeutic avenue against NASH. More attention should be paid to deciphering the crosstalk mechanisms linking gut microbiota to non-alcoholic fatty liver disease (NAFLD) to identify new therapeutic targets for this disease.


Subject(s)
Autophagy/drug effects , Gastrointestinal Microbiome/drug effects , Hypoglycemic Agents/administration & dosage , Metformin/administration & dosage , Non-alcoholic Fatty Liver Disease/drug therapy , Non-alcoholic Fatty Liver Disease/metabolism , Toll-Like Receptor 4 , Animals , Autophagy/physiology , Diet, High-Fat/adverse effects , Drug Therapy, Combination , Gastrointestinal Microbiome/physiology , Lipopolysaccharides/toxicity , Male , Probiotics/administration & dosage , Random Allocation , Rats , Rats, Sprague-Dawley , Toll-Like Receptor 4/metabolism
10.
Environ Sci Pollut Res Int ; 27(23): 28949-28961, 2020 Aug.
Article in English | MEDLINE | ID: mdl-32418110

ABSTRACT

This study is anchored on the use of an eco-friendly effective plasma technique and cationization treatment to improve the hydrophobic nature of polyester (PET) fabric by incorporating hydrophilic functional groups onto the PET surface. The PET surface was initially treated with three different plasma gases prior to cationization treatment with quaternary ammonium salt (Quat 188). Madder roots were used, to produce natural dyes for the green coloration of PET fabrics in both dyeing and printing processes. The color strength (K/S) was measured to study the influence of both plasma gases and the cationization treatment on the coloration of PET fabric. Exposure to nitrogen plasma gases prior to the cationization treatment showed promising results for efficient PET coloration, resulting in the selection of nitrogen as a working gas at a flow rate of 3 l/min. The results also demonstrated that by combining the nitrogen plasma technique and cationization treatment, PET fabric with a highly effective surface was obtained, resulting in improved coloration, wettability, tensile strength, and roughness properties.


Subject(s)
Polyesters , Textiles , Color , Coloring Agents , Wettability
SELECTION OF CITATIONS
SEARCH DETAIL
...