Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
Add more filters










Publication year range
1.
PLoS One ; 19(3): e0298305, 2024.
Article in English | MEDLINE | ID: mdl-38512890

ABSTRACT

Skin cancer is one of the most fatal skin lesions, capable of leading to fatality if not detected in its early stages. The characteristics of skin lesions are similar in many of the early stages of skin lesions. The AI in categorizing diverse types of skin lesions significantly contributes to and helps dermatologists to preserve patients' lives. This study introduces a novel approach that capitalizes on the strengths of hybrid systems of Convolutional Neural Network (CNN) models to extract intricate features from dermoscopy images with Random Forest (Rf) and Feed Forward Neural Networks (FFNN) networks, leading to the development of hybrid systems that have superior capabilities early detection of all types of skin lesions. By integrating multiple CNN features, the proposed methods aim to improve the robustness and discriminatory capabilities of the AI system. The dermoscopy images were optimized for the ISIC2019 dataset. Then, the area of the lesions was segmented and isolated from the rest of the image by a Gradient Vector Flow (GVF) algorithm. The first strategy for dermoscopy image analysis for early diagnosis of skin lesions is by the CNN-RF and CNN-FFNN hybrid models. CNN models (DenseNet121, MobileNet, and VGG19) receive a region of interest (skin lesions) and produce highly representative feature maps for each lesion. The second strategy to analyze the area of skin lesions and diagnose their type by means of CNN-RF and CNN-FFNN hybrid models based on the features of the combined CNN models. Hybrid models based on combined CNN features have achieved promising results for diagnosing dermoscopy images of the ISIC 2019 dataset and distinguishing skin cancers from other skin lesions. The Dense-Net121-MobileNet-RF hybrid model achieved an AUC of 95.7%, an accuracy of 97.7%, a precision of 93.65%, a sensitivity of 91.93%, and a specificity of 99.49%.


Subject(s)
Melanoma , Skin Diseases , Skin Neoplasms , Humans , Melanoma/diagnostic imaging , Melanoma/pathology , Dermoscopy/methods , Early Detection of Cancer , Skin Neoplasms/diagnostic imaging , Skin Neoplasms/pathology , Skin Diseases/diagnostic imaging , Neural Networks, Computer
2.
Diagnostics (Basel) ; 13(17)2023 Aug 28.
Article in English | MEDLINE | ID: mdl-37685321

ABSTRACT

Diabetic retinopathy (DR) is a complication of diabetes that damages the delicate blood vessels of the retina and leads to blindness. Ophthalmologists rely on diagnosing the retina by imaging the fundus. The process takes a long time and needs skilled doctors to diagnose and determine the stage of DR. Therefore, automatic techniques using artificial intelligence play an important role in analyzing fundus images for the detection of the stages of DR development. However, diagnosis using artificial intelligence techniques is a difficult task and passes through many stages, and the extraction of representative features is important in reaching satisfactory results. Convolutional Neural Network (CNN) models play an important and distinct role in extracting features with high accuracy. In this study, fundus images were used for the detection of the developmental stages of DR by two proposed methods, each with two systems. The first proposed method uses GoogLeNet with SVM and ResNet-18 with SVM. The second method uses Feed-Forward Neural Networks (FFNN) based on the hybrid features extracted by first using GoogLeNet, Fuzzy color histogram (FCH), Gray Level Co-occurrence Matrix (GLCM), and Local Binary Pattern (LBP); followed by ResNet-18, FCH, GLCM and LBP. All the proposed methods obtained superior results. The FFNN network with hybrid features of ResNet-18, FCH, GLCM, and LBP obtained 99.7% accuracy, 99.6% precision, 99.6% sensitivity, 100% specificity, and 99.86% AUC.

3.
Diagnostics (Basel) ; 13(11)2023 May 29.
Article in English | MEDLINE | ID: mdl-37296753

ABSTRACT

White blood cells (WBCs) are one of the main components of blood produced by the bone marrow. WBCs are part of the immune system that protects the body from infectious diseases and an increase or decrease in the amount of any type that causes a particular disease. Thus, recognizing the WBC types is essential for diagnosing the patient's health and identifying the disease. Analyzing blood samples to determine the amount and WBC types requires experienced doctors. Artificial intelligence techniques were applied to analyze blood samples and classify their types to help doctors distinguish between types of infectious diseases due to increased or decreased WBC amounts. This study developed strategies for analyzing blood slide images to classify WBC types. The first strategy is to classify WBC types by the SVM-CNN technique. The second strategy for classifying WBC types is by SVM based on hybrid CNN features, which are called VGG19-ResNet101-SVM, ResNet101-MobileNet-SVM, and VGG19-ResNet101-MobileNet-SVM techniques. The third strategy for classifying WBC types by FFNN is based on a hybrid model of CNN and handcrafted features. With MobileNet and handcrafted features, FFNN achieved an AUC of 99.43%, accuracy of 99.80%, precision of 99.75%, specificity of 99.75%, and sensitivity of 99.68%.

4.
Diagnostics (Basel) ; 13(11)2023 May 31.
Article in English | MEDLINE | ID: mdl-37296776

ABSTRACT

Parkinson's disease (PD) is a neurodegenerative condition generated by the dysfunction of brain cells and their 60-80% inability to produce dopamine, an organic chemical responsible for controlling a person's movement. This condition causes PD symptoms to appear. Diagnosis involves many physical and psychological tests and specialist examinations of the patient's nervous system, which causes several issues. The methodology method of early diagnosis of PD is based on analysing voice disorders. This method extracts a set of features from a recording of the person's voice. Then machine-learning (ML) methods are used to analyse and diagnose the recorded voice to distinguish Parkinson's cases from healthy ones. This paper proposes novel techniques to optimize the techniques for early diagnosis of PD by evaluating selected features and hyperparameter tuning of ML algorithms for diagnosing PD based on voice disorders. The dataset was balanced by the synthetic minority oversampling technique (SMOTE) and features were arranged according to their contribution to the target characteristic by the recursive feature elimination (RFE) algorithm. We applied two algorithms, t-distributed stochastic neighbour embedding (t-SNE) and principal component analysis (PCA), to reduce the dimensions of the dataset. Both t-SNE and PCA finally fed the resulting features into the classifiers support-vector machine (SVM), K-nearest neighbours (KNN), decision tree (DT), random forest (RF), and multilayer perception (MLP). Experimental results proved that the proposed techniques were superior to existing studies in which RF with the t-SNE algorithm yielded an accuracy of 97%, precision of 96.50%, recall of 94%, and F1-score of 95%. In addition, MLP with the PCA algorithm yielded an accuracy of 98%, precision of 97.66%, recall of 96%, and F1-score of 96.66%.

5.
Diagnostics (Basel) ; 13(11)2023 Jun 03.
Article in English | MEDLINE | ID: mdl-37296809

ABSTRACT

Epilepsy is a neurological disorder in the activity of brain cells that leads to seizures. An electroencephalogram (EEG) can detect seizures as it contains physiological information of the neural activity of the brain. However, visual examination of EEG by experts is time consuming, and their diagnoses may even contradict each other. Thus, an automated computer-aided diagnosis for EEG diagnostics is necessary. Therefore, this paper proposes an effective approach for the early detection of epilepsy. The proposed approach involves the extraction of important features and classification. First, signal components are decomposed to extract the features via the discrete wavelet transform (DWT) method. Principal component analysis (PCA) and the t-distributed stochastic neighbor embedding (t-SNE) algorithm were applied to reduce the dimensions and focus on the most important features. Subsequently, K-means clustering + PCA and K-means clustering + t-SNE were used to divide the dataset into subgroups to reduce the dimensions and focus on the most important representative features of epilepsy. The features extracted from these steps were fed to extreme gradient boosting, K-nearest neighbors (K-NN), decision tree (DT), random forest (RF) and multilayer perceptron (MLP) classifiers. The experimental results demonstrated that the proposed approach provides superior results to those of existing studies. During the testing phase, the RF classifier with DWT and PCA achieved an accuracy of 97.96%, precision of 99.1%, recall of 94.41% and F1 score of 97.41%. Moreover, the RF classifier with DWT and t-SNE attained an accuracy of 98.09%, precision of 99.1%, recall of 93.9% and F1 score of 96.21%. In comparison, the MLP classifier with PCA + K-means reached an accuracy of 98.98%, precision of 99.16%, recall of 95.69% and F1 score of 97.4%.

6.
Diagnostics (Basel) ; 13(10)2023 May 16.
Article in English | MEDLINE | ID: mdl-37238241

ABSTRACT

The gastrointestinal system contains the upper and lower gastrointestinal tracts. The main tasks of the gastrointestinal system are to break down food and convert it into essential elements that the body can benefit from and expel waste in the form of feces. If any organ is affected, it does not work well, which affects the body. Many gastrointestinal diseases, such as infections, ulcers, and benign and malignant tumors, threaten human life. Endoscopy techniques are the gold standard for detecting infected parts within the organs of the gastrointestinal tract. Endoscopy techniques produce videos that are converted into thousands of frames that show the disease's characteristics in only some frames. Therefore, this represents a challenge for doctors because it is a tedious task that requires time, effort, and experience. Computer-assisted automated diagnostic techniques help achieve effective diagnosis to help doctors identify the disease and give the patient the appropriate treatment. In this study, many efficient methodologies for analyzing endoscopy images for diagnosing gastrointestinal diseases were developed for the Kvasir dataset. The Kvasir dataset was classified by three pre-trained models: GoogLeNet, MobileNet, and DenseNet121. The images were optimized, and the gradient vector flow (GVF) algorithm was applied to segment the regions of interest (ROIs), isolating them from healthy regions and saving the endoscopy images as Kvasir-ROI. The Kvasir-ROI dataset was classified by the three pre-trained GoogLeNet, MobileNet, and DenseNet121 models. Hybrid methodologies (CNN-FFNN and CNN-XGBoost) were developed based on the GVF algorithm and achieved promising results for diagnosing disease based on endoscopy images of gastroenterology. The last methodology is based on fused CNN models and their classification by FFNN and XGBoost networks. The hybrid methodology based on the fused CNN features, called GoogLeNet-MobileNet-DenseNet121-XGBoost, achieved an AUC of 97.54%, accuracy of 97.25%, sensitivity of 96.86%, precision of 97.25%, and specificity of 99.48%.

7.
Diagnostics (Basel) ; 13(10)2023 May 17.
Article in English | MEDLINE | ID: mdl-37238243

ABSTRACT

Breast cancer is the second most common type of cancer among women, and it can threaten women's lives if it is not diagnosed early. There are many methods for detecting breast cancer, but they cannot distinguish between benign and malignant tumors. Therefore, a biopsy taken from the patient's abnormal tissue is an effective way to distinguish between malignant and benign breast cancer tumors. There are many challenges facing pathologists and experts in diagnosing breast cancer, including the addition of some medical fluids of various colors, the direction of the sample, the small number of doctors and their differing opinions. Thus, artificial intelligence techniques solve these challenges and help clinicians resolve their diagnostic differences. In this study, three techniques, each with three systems, were developed to diagnose multi and binary classes of breast cancer datasets and distinguish between benign and malignant types with 40× and 400× factors. The first technique for diagnosing a breast cancer dataset is using an artificial neural network (ANN) with selected features from VGG-19 and ResNet-18. The second technique for diagnosing breast cancer dataset is by ANN with combined features for VGG-19 and ResNet-18 before and after principal component analysis (PCA). The third technique for analyzing breast cancer dataset is by ANN with hybrid features. The hybrid features are a hybrid between VGG-19 and handcrafted; and a hybrid between ResNet-18 and handcrafted. The handcrafted features are mixed features extracted using Fuzzy color histogram (FCH), local binary pattern (LBP), discrete wavelet transform (DWT) and gray level co-occurrence matrix (GLCM) methods. With the multi classes data set, ANN with the hybrid features of the VGG-19 and handcrafted reached a precision of 95.86%, an accuracy of 97.3%, sensitivity of 96.75%, AUC of 99.37%, and specificity of 99.81% with images at magnification factor 400×. Whereas with the binary classes data set, ANN with the hybrid features of the VGG-19 and handcrafted reached a precision of 99.74%, an accuracy of 99.7%, sensitivity of 100%, AUC of 99.85%, and specificity of 100% with images at a magnification factor 400×.

8.
Diagnostics (Basel) ; 13(7)2023 Apr 01.
Article in English | MEDLINE | ID: mdl-37046532

ABSTRACT

Melanoma is one of the deadliest types of skin cancer that leads to death if not diagnosed early. Many skin lesions are similar in the early stages, which causes an inaccurate diagnosis. Accurate diagnosis of the types of skin lesions helps dermatologists save patients' lives. In this paper, we propose hybrid systems based on the advantages of fused CNN models. CNN models receive dermoscopy images of the ISIC 2019 dataset after segmenting the area of lesions and isolating them from healthy skin through the Geometric Active Contour (GAC) algorithm. Artificial neural network (ANN) and Random Forest (Rf) receive fused CNN features and classify them with high accuracy. The first methodology involved analyzing the area of skin lesions and diagnosing their type early using the hybrid models CNN-ANN and CNN-RF. CNN models (AlexNet, GoogLeNet and VGG16) receive lesions area only and produce high depth feature maps. Thus, the deep feature maps were reduced by the PCA and then classified by ANN and RF networks. The second methodology involved analyzing the area of skin lesions and diagnosing their type early using the hybrid CNN-ANN and CNN-RF models based on the features of the fused CNN models. It is worth noting that the features of the CNN models were serially integrated after reducing their high dimensions by Principal Component Analysis (PCA). Hybrid models based on fused CNN features achieved promising results for diagnosing dermatoscopic images of the ISIC 2019 data set and distinguishing skin cancer from other skin lesions. The AlexNet-GoogLeNet-VGG16-ANN hybrid model achieved an AUC of 94.41%, sensitivity of 88.90%, accuracy of 96.10%, precision of 88.69%, and specificity of 99.44%.

9.
Bioengineering (Basel) ; 10(3)2023 Mar 21.
Article in English | MEDLINE | ID: mdl-36978774

ABSTRACT

Lung and colon cancer are among humanity's most common and deadly cancers. In 2020, there were 4.19 million people diagnosed with lung and colon cancer, and more than 2.7 million died worldwide. Some people develop lung and colon cancer simultaneously due to smoking which causes lung cancer, leading to an abnormal diet, which also causes colon cancer. There are many techniques for diagnosing lung and colon cancer, most notably the biopsy technique and its analysis in laboratories. Due to the scarcity of health centers and medical staff, especially in developing countries. Moreover, manual diagnosis takes a long time and is subject to differing opinions of doctors. Thus, artificial intelligence techniques solve these challenges. In this study, three strategies were developed, each with two systems for early diagnosis of histological images of the LC25000 dataset. Histological images have been improved, and the contrast of affected areas has been increased. The GoogLeNet and VGG-19 models of all systems produced high dimensional features, so redundant and unnecessary features were removed to reduce high dimensionality and retain essential features by the PCA method. The first strategy for diagnosing the histological images of the LC25000 dataset by ANN uses crucial features of GoogLeNet and VGG-19 models separately. The second strategy uses ANN with the combined features of GoogLeNet and VGG-19. One system reduced dimensions and combined, while the other combined high features and then reduced high dimensions. The third strategy uses ANN with fusion features of CNN models (GoogLeNet and VGG-19) and handcrafted features. With the fusion features of VGG-19 and handcrafted features, the ANN reached a sensitivity of 99.85%, a precision of 100%, an accuracy of 99.64%, a specificity of 100%, and an AUC of 99.86%.

10.
Diagnostics (Basel) ; 13(6)2023 Mar 08.
Article in English | MEDLINE | ID: mdl-36980334

ABSTRACT

Acute lymphoblastic leukemia (ALL) is one of the deadliest forms of leukemia due to the bone marrow producing many white blood cells (WBC). ALL is one of the most common types of cancer in children and adults. Doctors determine the treatment of leukemia according to its stages and its spread in the body. Doctors rely on analyzing blood samples under a microscope. Pathologists face challenges, such as the similarity between infected and normal WBC in the early stages. Manual diagnosis is prone to errors, differences of opinion, and the lack of experienced pathologists compared to the number of patients. Thus, computer-assisted systems play an essential role in assisting pathologists in the early detection of ALL. In this study, systems with high efficiency and high accuracy were developed to analyze the images of C-NMC 2019 and ALL-IDB2 datasets. In all proposed systems, blood micrographs were improved and then fed to the active contour method to extract WBC-only regions for further analysis by three CNN models (DenseNet121, ResNet50, and MobileNet). The first strategy for analyzing ALL images of the two datasets is the hybrid technique of CNN-RF and CNN-XGBoost. DenseNet121, ResNet50, and MobileNet models extract deep feature maps. CNN models produce high features with redundant and non-significant features. So, CNN deep feature maps were fed to the Principal Component Analysis (PCA) method to select highly representative features and sent to RF and XGBoost classifiers for classification due to the high similarity between infected and normal WBC in early stages. Thus, the strategy for analyzing ALL images using serially fused features of CNN models. The deep feature maps of DenseNet121-ResNet50, ResNet50-MobileNet, DenseNet121-MobileNet, and DenseNet121-ResNet50-MobileNet were merged and then classified by RF classifiers and XGBoost. The RF classifier with fused features for DenseNet121-ResNet50-MobileNet reached an AUC of 99.1%, accuracy of 98.8%, sensitivity of 98.45%, precision of 98.7%, and specificity of 98.85% for the C-NMC 2019 dataset. With the ALL-IDB2 dataset, hybrid systems achieved 100% results for AUC, accuracy, sensitivity, precision, and specificity.

11.
Diagnostics (Basel) ; 13(4)2023 Feb 20.
Article in English | MEDLINE | ID: mdl-36832302

ABSTRACT

An infectious disease called tuberculosis (TB) exhibits pneumonia-like symptoms and traits. One of the most important methods for identifying and diagnosing pneumonia and tuberculosis is X-ray imaging. However, early discrimination is difficult for radiologists and doctors because of the similarities between pneumonia and tuberculosis. As a result, patients do not receive the proper care, which in turn does not prevent the disease from spreading. The goal of this study is to extract hybrid features using a variety of techniques in order to achieve promising results in differentiating between pneumonia and tuberculosis. In this study, several approaches for early identification and distinguishing tuberculosis from pneumonia were suggested. The first proposed system for differentiating between pneumonia and tuberculosis uses hybrid techniques, VGG16 + support vector machine (SVM) and ResNet18 + SVM. The second proposed system for distinguishing between pneumonia and tuberculosis uses an artificial neural network (ANN) based on integrating features of VGG16 and ResNet18, before and after reducing the high dimensions using the principal component analysis (PCA) method. The third proposed system for distinguishing between pneumonia and tuberculosis uses ANN based on integrating features of VGG16 and ResNet18 separately with handcrafted features extracted by local binary pattern (LBP), discrete wavelet transform (DWT) and gray level co-occurrence matrix (GLCM) algorithms. All the proposed systems have achieved superior results in the early differentiation between pneumonia and tuberculosis. An ANN based on the features of VGG16 with LBP, DWT and GLCM (LDG) reached an accuracy of 99.6%, sensitivity of 99.17%, specificity of 99.42%, precision of 99.63%, and an AUC of 99.58%.

SELECTION OF CITATIONS
SEARCH DETAIL
...