Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Curr Mol Med ; 2024 Jun 24.
Article in English | MEDLINE | ID: mdl-38918983

ABSTRACT

Targeting genes using siRNA shows promise as an approach to alleviate symptoms of diabetic neuropathy. It focuses on neuropathies and distal symmetric polyneuropathy (DSPN) to explore the potential use of small interfering RNA (siRNA) as a treatment for diabetic neuropathy. Timely identification and management of neuropathy play a critical role in mitigating potential complications. RNAi success depends on understanding factors affecting small interfering RNA (siRNA) functionality and specificity. These include sequence space restrictions, structural and sequence features, mechanisms for nonspecific gene modulation, and chemical modifications. Addressing these factors enhances siRNA performance for efficient gene silencing and confidence in RNAi-mediated genomic studies. Diabetic retinopathy, particularly in South Asian, African, Latin American, and indigenous populations, is a significant concern due to its association with diabetes. Ethnicity plays a crucial role in its development and progression. Despite declining rates in the US, global trends remain concerning, and further research is needed to understand regional differences and reinforce ethnicity-based screening and treatment protocols. In this regard, siRNA emerges as a valuable instrument for early intervention strategies. While presenting promising therapeutic applications, siRNA utilization encounters challenges within insect pest control contexts, thereby providing insights into enhancing its delivery mechanisms for neuropathy treatment purposes. Recent advancements in delivery modalities, such as nanoparticles, allow for the controlled release of siRNA. More investigation is necessary to grasp the safety and efficacy of siRNA technology fully. It holds promise in transforming the treatment of diabetic neuropathy by honing in on particular genes and tackling issues such as inflammation and oxidative stress. Continuous advancements in delivery techniques have the potential to enhance patient results significantly. SiRNA targets genes in diabetic neuropathy, curbing nerve damage and pain and potentially preventing or delaying the condition. Customized treatments based on genetic variations hold promise for symptom management and enhancing quality of life.

2.
Sci Rep ; 14(1): 3705, 2024 02 14.
Article in English | MEDLINE | ID: mdl-38355697

ABSTRACT

Nanoengineered chitosan functionalized titanium dioxide biohybrids (CTiO2@NPs) were prepared with Amomum subulatum Roxb extract via one-pot green method and assessed by UV-Vis spectroscopy, XRD, SEM and EDAX analyses. As revealed by XRD pattern, the nanohybrids exhibits a rutile TiO2 crystallites around 45 nm in size. The emergence of the Ti-O-Ti bond is identified by observing a peak between 400 and 800 cm-1. A wide bandgap (4.8 eV) has been observed in CTiO2@NPs, due to the quantum confinement effects and the oxygen vacancies reveal the intriguing potential of developed nanohybrids for various applications. Surface flaws were identified by observing an emission band at 382, 437, 482, 517, and 556 nm. They also exhibit better antibacterial performances using well diffusion method against Staphylococcus aureus, Bacillus substilis, Klebsiella pneumonia, and Escherichia coli. CTiO2@NPs were discovered to have free radical scavenging activity on DPPH analysis and exhibit IC50 value as 95.80 µg/mL and standard (Vitamin C) IC50 is 87.62 µg/mL. CTiO2@NPs exhibited better anticancer properties against the osteosarcoma (MG-63) cell line. All these findings suggest that there is a forum for further useful therapeutic applications. Therefore, we claim that nano-engineered carbohydrated TiO2 phytohybrid is a promising solution for bacterial infections and bone cancer.


Subject(s)
Bacterial Infections , Chitosan , Metal Nanoparticles , Neoplasms , Humans , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Titanium/pharmacology , Titanium/chemistry , Bacterial Infections/drug therapy , Metal Nanoparticles/chemistry
3.
Drug Des Devel Ther ; 18: 81-95, 2024.
Article in English | MEDLINE | ID: mdl-38260090

ABSTRACT

Purpose: The study aimed to perform a population pharmacokinetic (PK) analysis to obtain vancomycin PK parameter estimates in Sudanese adult patients. The population PK model is then applied to perform model-based dose optimization. Patients and Methods: Data were collected through a retrospective, single-center, observational cohort study performed in Aliaa Specialist Hospital, Khartoum, Sudan. A population PK model was developed using the MonolixSuite 2020R1 to explore the potential effects of demographics and laboratory covariates on vancomycin PK. Monte Carlo simulations were performed to optimize dosage regimens as a function of creatinine clearance (CLcr) and virtual patients were partitioned into five CLcr groups. Results: We retrospectively collected 194 vancomycin plasma concentrations from 99 adults. The median (interquartile range) for age (years) and CLcr (mL/min) were 65 (50-75) and 12.7 (5.52-25.78), respectively. Vancomycin PK data were best fitted using a one-compartment model with linear elimination. The estimates of clearance and volume of distribution were 2.02 L/h and 65 L, respectively. CLcr was identified as the main covariate explaining the PK variability in vancomycin CL. CL significantly decreased with decreasing CLcr. For the five CLcr groups evaluated, a tailored vancomycin daily maintenance dose (using patients' CLcr) ranged from 200 to 1650 mg. Overall, simulations showed that 45% (CI; 41.11-47.36%) of patients would achieve a target AUC with the suggested dosages. Conclusion: A population PK model of vancomycin was developed using data obtained from adult Sudanese patients. Model-based dose optimization can aid clinicians in selecting initial vancomycin doses that will maximize the likelihood of a favorable treatment response.


Subject(s)
Renal Insufficiency , Vancomycin , Adult , Humans , Retrospective Studies , Kinetics , Laboratories
SELECTION OF CITATIONS
SEARCH DETAIL
...