Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Front Cardiovasc Med ; 9: 925692, 2022.
Article in English | MEDLINE | ID: mdl-35845057

ABSTRACT

Cardiac sympathetic activation, mediated by ß-adrenergic receptors (ß-ARs), normally increases cardiac contraction and relaxation. Accomplishing this task requires a physiological, concerted Ca2+ signaling, being able to increase Ca2+ release from sarcoplasmic reticulum (SR) in systole and speed up Ca2+ re-uptake in diastole. In heart failure (HF) myocardial ß-ARs undergo desensitization/down-regulation due to sustained sympathetic adrenergic activation. ß-AR desensitization/down-regulation diminishes adrenergic signaling and cardiac contractile reserve, and is conventionally considered to be detrimental in HF progression. Abnormal Ca2+ handling, manifested as cardiac ryanodine receptor (RyR2) dysfunction and diastolic Ca2+ leak (due to sustained adrenergic activation) also occur in HF. RyR2 dysfunction and Ca2+ leak deplete SR Ca2+ store, diminish Ca2+ release in systole and elevate Ca2+ levels in diastole, impairing both systolic and diastolic ventricular function. Moreover, elevated Ca2+ levels in diastole promote triggered activity and arrhythmogenesis. In the presence of RyR2 dysfunction and Ca2+ leak, further activation of the ß-AR signaling in HF would worsen the existing abnormal Ca2+ handling, exacerbating not only cardiac dysfunction, but also ventricular arrhythmogenesis and sudden cardiac death. Thus, we conclude that ß-AR desensitization/down-regulation may be a self-preserving, adaptive process (acting like an intrinsic ß-AR blocker) protecting the failing heart from developing lethal ventricular arrhythmias under conditions of elevated sympathetic drive and catecholamine levels in HF, rather than a conventionally considered detrimental process. This also implies that medications simply enhancing ß-AR signaling (like ß-AR agonists) may not be so beneficial unless they can also correct dysfunctional Ca2+ handling in HF.

2.
Pharmaceutics ; 12(12)2020 Dec 17.
Article in English | MEDLINE | ID: mdl-33348722

ABSTRACT

Exogenously administered 17ß-estradiol (E2) can improve spatial learning and memory, although E2 also exerts undesired effects on peripheral organs. Clinically, E2 has been solubilized in cyclodextrin for intranasal administration, which enhances brain-specific delivery. Prior work shows that the cyclodextrin structure impacts region-specific brain distribution of intranasally administered small molecules. Here, we investigated (1) cyclodextrin type-specific modulation of intranasal E2 brain distribution, and (2) cognitive and peripheral tissue effects of intranasal E2 in middle-aged ovariectomized rats. First, brain and peripheral organ distribution of intranasally administered, tritiated E2 was measured for E2 solubilized freely or in one of four cyclodextrin formulations. The E2-cyclodextrin formulation with greatest E2 uptake in cognitive brain regions versus uterine horns was then compared to free E2 on learning, memory, and uterine measures. Free E2 improved spatial reference memory, whereas E2-cyclodextrin impaired spatial working memory compared to their respective controls. Both E2 formulations increased uterine horn weights relative to controls, with E2-cyclodextrin resulting in the greatest uterine horn weight, suggesting increased uterine stimulation. Thus, intranasal administration of freely solubilized E2 is a strategic delivery tool that can yield a cognitively beneficial impact of the hormone alongside decreased peripheral effects compared to intranasal administration of cyclodextrin solubilized E2.

SELECTION OF CITATIONS
SEARCH DETAIL
...