Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Langmuir ; 38(20): 6387-6394, 2022 May 24.
Article in English | MEDLINE | ID: mdl-35533362

ABSTRACT

Interfacial tension (IFT) is a crucial parameter in many natural and industrial processes, such as enhanced oil recovery and subsurface energy storage. IFT determines how easy the fluids can pass through pore throats and hence will decide how much residual fluids will be left behind. Here, we use a porous glass micromodel to investigate the dynamic IFT between oil and Armovis viscoelastic surfactant (VES) solution based on the concept of drop deformation while passing through a pore throat. Three different concentrations of VES, that is, 0.5, 0.75, and 1.25% vol% prepared using 57 K ppm synthetic seawater, were used in this study. The rheology obtained using a rheometer at ambient temperature showed zero shear viscosity of 325, 1101, and 1953 cP for 0.5%, 0.75%, and 1.25% VES, respectively, with a power-law region between 2 and 50 1/s. The dynamic IFT increases with the shear rate and then reaches a plateau. The results of IFT were compared with those obtained from the spinning drop method, which shows 97% accuracy for 1.25% VES, whereas the accuracy decreased to 65% for 0.75 VES and 51% for 0.5% VES. The findings indicate that we can reliably estimate the IFT of VES at higher concentrations directly during multiphase flow in porous micromodels without the need to perform separate experiments and wait for a long time to reach equilibrium.

2.
ACS Omega ; 7(1): 504-517, 2022 Jan 11.
Article in English | MEDLINE | ID: mdl-35036719

ABSTRACT

A viscoelastic surfactant (VES) has the combined properties of a surfactant and a polymer. Injection of VES fluids into naturally fractured reservoirs (NFRs) can control the mobility of the injected fluid and enhance the total oil recovery. This paper presents a field-scale simulation to evaluate the performance of a noble VES fluid in enhancing the oil recovery from a naturally fractured reservoir. In this work, the results of coreflooding, computerized tomography (CT)-scan, rheology, interfacial tension (IFT), and adsorption measurements were used to build and calibrate a lab-scale model. Thereafter, a chemical enhanced oil recovery (EOR) modeling simulator developed by a computer modeling group (CMG-STARS) was used to build a field-scale simulation. Real seismic data, permeability and porosity distributions, and operating conditions were utilized to develop and evaluate the simulation model. The results show that VES can outperform the surfactant-polymer (SP) flooding and waterflooding in NFRs; VES improved the oil recovery by 10% and reduced the water cut by 47%, at the same conditions. VES reduced the IFT by two orders of magnitude (100 times) compared to waterflooding. Also, VES altered the rock wettability to a more water-wet status, leading to reduce the relative permeability to water (K rw) by a factor of 10, on average. Finally, the simulation study indicated that applying waterflooding after VES flooding leads to a minor increase in the oil recovery. Overall, this study provides a detailed comparison between VES flooding, SP flooding, and conventional waterflooding in NFRs. Sensitivity analysis was performed to study the impact of treatment parameters on the oil recovery from naturally fractured reservoirs. Using actual NFR data, the optimum VES flooding was determined, which will help in conducting VES flooding for real EOR operations.

SELECTION OF CITATIONS
SEARCH DETAIL
...