Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
Life Sci ; 310: 121129, 2022 Dec 01.
Article in English | MEDLINE | ID: mdl-36306871

ABSTRACT

AIMS: Parkinson's disease (PD) is characterized by motor disabilities precipitated by α-synuclein aggregation and dopaminergic neurodegeneration. The roles of oxidative stress, neuroinflammation, dysfunction of the mitogen-activated protein kinase (MAPK) pathway, and apoptosis in dopaminergic neurodegeneration have been established. We investigated the potential neuroprotective effect of xanthotoxin, a furanocoumarin extracted from family Apiaceae, in a rotenone-induced PD model in rats since it has not yet been elucidated. MAIN METHODS: For 21 days, rats received 11 rotenone injections (1.5 mg/kg, s.c.) on the corresponding days to induce a PD model and xanthotoxin (15 mg/kg, i.p.) daily. KEY FINDINGS: Xanthotoxin preserved dopaminergic neurons and restored tyrosine hydroxylase positive cells, with suppression of α-synuclein accumulation and restoration of striatal levels of dopamine and its metabolites resulting in amelioration of motor deficits. Furthermore, xanthotoxin impeded rotenone-stimulated neurodegeneration by reducing oxidative stress, which was confirmed by malondialdehyde suppression and glutathione antioxidant enzyme augmentation. It also suppressed neurotoxic inflammatory mediators including tumor necrosis factor-α, interleukin-1ß, and inducible nitric oxide synthase. Additionally, xanthotoxin attenuated the rotenone-mediated activation of MAPK kinases, C-Jun N-terminal kinase, p38 MAPK, and extracellular signal-regulated kinases 1/2, with consequent ablation of apoptotic mediators including Bax, cytochrome c, and caspase-3. SIGNIFICANCE: This study revealed the neuroprotective effect of xanthotoxin in a rotenone-induced PD model in rats, an action that could be attributed to its antioxidant, anti-inflammatory activities as well as to its ability to maintain the function of the MAPK signaling pathway and attenuate apoptosis. Therefore, it could be a valuable therapy for PD.


Subject(s)
Methoxsalen , Neuroprotective Agents , Parkinson Disease, Secondary , Animals , Rats , alpha-Synuclein/metabolism , Antioxidants/metabolism , Dopamine/metabolism , Dopaminergic Neurons , Inflammation/pathology , Methoxsalen/pharmacology , Mitogen-Activated Protein Kinases/metabolism , Neuroprotective Agents/pharmacology , Oxidative Stress , Rats, Wistar , Rotenone/adverse effects , Signal Transduction , Parkinson Disease, Secondary/drug therapy , Parkinson Disease, Secondary/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...