Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Language
Publication year range
1.
Neurosci Biobehav Rev ; 138: 104680, 2022 07.
Article in English | MEDLINE | ID: mdl-35513169

ABSTRACT

There is a clear link between psychiatric disorders and social behaviour, and evidence suggests the involvement of the endocannabinoid system (ECS). A systematic review of preclinical literature was conducted using MEDLINE (PubMed) and PsychINFO databases to examine whether pharmacological and/or genetic manipulations of the ECS alter social behaviours in wildtype (WT) animals or models of social impairment (SIM). Eighty studies were included. Risk of bias (RoB) was assessed using SYRCLE's RoB tool. While some variability was evident, studies most consistently found that direct cannabinoid receptor (CBR) agonism decreased social behaviours in WT animals, while indirect CBR activation via enzyme inhibition or gene-knockout increased social behaviours. Direct and, more consistently, indirect CBR activation reversed social deficits in SIM. These CBR-mediated effects were often sex- and developmental-phase-dependent and blocked by CBR antagonism. Overall, ECS enzyme inhibition may improve social behaviour in SIM, suggesting the potential usefulness of ECS enzyme inhibition as a therapeutic approach for social deficits. Future research should endeavour to elucidate ECS status in neuropsychiatric disorders characterized by social deficits.


Subject(s)
Cannabinoid Receptor Agonists , Endocannabinoids , Animals , Animals, Laboratory , Endocannabinoids/physiology , Humans , Social Behavior
2.
Int J Radiat Oncol Biol Phys ; 113(2): 390-400, 2022 06 01.
Article in English | MEDLINE | ID: mdl-35143888

ABSTRACT

PURPOSE: Cranial radiation therapy for the treatment of pediatric brain tumors results in changes to brain development that are detectable with magnetic resonance imaging. We have previously demonstrated similar structural changes in both humans and mice. The goal of the current study was to examine the role of inflammation in this response. Because neuroanatomic volume deficits in pediatric survivors are more pronounced in female patients, we also evaluated possible dependence on sex. METHODS AND MATERIALS: Other studies have shown that male mice deficient in the C-C chemokine ligand 2 gene (Ccl2; previously Mcp-1) have a muted neuroinflammatory response after irradiation. We irradiated Ccl2-/- (HOM; female = 12, male = 13), Ccl2-/+ (HET; female = 13, male = 16), and Ccl2+/+ (WT; female = 11, male = 13) mice with a whole brain dose of 7 Gy during infancy. Control mice (with approximately equal group sizes) were anesthetized but not irradiated. In vivo magnetic resonance images were acquired at 4 time points up to 3 months after irradiation, and deformation-based morphometry was used to identify volume differences. RESULTS: Irradiation of WT mice resulted in a deficit in neuroanatomic growth with limited sex dependence. HOM and HET male mice were significantly protected from this radiation-induced damage, whereas HOM and HET female mice were not. CONCLUSIONS: Interventions aimed at mitigating the effects of cranial radiation therapy in pediatric cancer survivors by modulating inflammatory response will need to consider patient sex.


Subject(s)
Brain , Chemokine CCL2 , Cranial Irradiation , Radiation Injuries, Experimental , Animals , Brain/diagnostic imaging , Brain/radiation effects , Chemokine CCL2/deficiency , Cranial Irradiation/adverse effects , Female , Magnetic Resonance Imaging , Male , Mice , Radiation Injuries, Experimental/diagnostic imaging , Radiation Injuries, Experimental/metabolism
3.
Braz. J. Psychiatry (São Paulo, 1999, Impr.) ; 44(1): 81-93, Jan.-Feb. 2022. tab, graf
Article in English | LILACS-Express | LILACS | ID: biblio-1360186

ABSTRACT

Social anxiety disorder (SAD) is a highly prevalent psychiatric disorder that presents with an early age of onset, chronic disease course, and increased risk of psychiatric comorbidity. Current treatment options for SAD are associated with low response rates, suboptimal efficacy, and possible risk of adverse effects. Investigation of new neurobiological mechanisms may aid in the identification of more specific therapeutic targets for the treatment of this disorder. Emerging evidence suggests that the endogenous cannabinoid system, also referred to as the endocannabinoid system (ECS), could play a potential role in the pathophysiology of SAD. This review discusses the known pathophysiological mechanisms of SAD, the potential role of the ECS in this disorder, current drugs targeting the ECS, and the potential of these novel compounds to enhance the therapeutic armamentarium for SAD. Further investigational efforts, specifically in human populations, are warranted to improve our knowledge of the ECS in SAD.

4.
Braz J Psychiatry ; 44(1): 81-93, 2022.
Article in English | MEDLINE | ID: mdl-34468550

ABSTRACT

Social anxiety disorder (SAD) is a highly prevalent psychiatric disorder that presents with an early age of onset, chronic disease course, and increased risk of psychiatric comorbidity. Current treatment options for SAD are associated with low response rates, suboptimal efficacy, and possible risk of adverse effects. Investigation of new neurobiological mechanisms may aid in the identification of more specific therapeutic targets for the treatment of this disorder. Emerging evidence suggests that the endogenous cannabinoid system, also referred to as the endocannabinoid system (ECS), could play a potential role in the pathophysiology of SAD. This review discusses the known pathophysiological mechanisms of SAD, the potential role of the ECS in this disorder, current drugs targeting the ECS, and the potential of these novel compounds to enhance the therapeutic armamentarium for SAD. Further investigational efforts, specifically in human populations, are warranted to improve our knowledge of the ECS in SAD.


Subject(s)
Endocannabinoids , Phobia, Social , Anxiety , Comorbidity , Humans , Phobia, Social/drug therapy
5.
Curr Opin Immunol ; 71: 132-137, 2021 08.
Article in English | MEDLINE | ID: mdl-34411773

ABSTRACT

The TNF superfamily member a proliferation inducing ligand (APRIL, TNFSF13) plays a late role in humoral immunity at the level of antibody-producing plasmocytes. The recent characterization of the first immunodeficient patient with an inactivating mutation in the APRIL gene provided the last piece of functional data lacking in the human system. Based on this function, APRIL has been considered as a valuable target to dampen unwanted antibody production. After reviewing the late data acquired on the physiological function of APRIL in humoral immunity, we will here review the state of the art regarding APRIL targeting in autoimmune diseases.


Subject(s)
Autoimmune Diseases/immunology , Tumor Necrosis Factor Ligand Superfamily Member 13/immunology , Cell Proliferation , Humans , Ligands , Tumor Necrosis Factor Ligand Superfamily Member 13/genetics
6.
Methods Mol Biol ; 2248: 43-61, 2021.
Article in English | MEDLINE | ID: mdl-33185866

ABSTRACT

Chondroitin sulfate proteoglycans (CSPGs) are major constituents of the extracellular matrix and well-established obstacles to regeneration in the central nervous system. As such, they are promising targets for therapy in neurological pathologies where repair is needed, such as spinal cord injuries, and multiple sclerosis. Since CSPGs mediate their inhibitory functions by interacting with signaling protein partners through their variably sulfated chondroitin sulfate glycosaminoglycan (CS-GAG) chains, blocking these epitopes presents a path to promoting repair. A member of the tumor necrosis factor (TNF) superfamily, a proliferation-inducing ligand (APRIL) has been shown to bind to CSPGs. Here we describe in vitro methods to evaluate APRIL's ability to block CSPGs from interacting with their partner proteins and promote neuronal growth.


Subject(s)
Chondroitin Sulfate Proteoglycans/metabolism , Tumor Necrosis Factor Ligand Superfamily Member 13/metabolism , Animals , Blotting, Western , Brain , Cell Line , Chondroitin Sulfate Proteoglycans/antagonists & inhibitors , Cloning, Molecular , Enzyme-Linked Immunosorbent Assay , Gene Expression , Gene Library , Humans , Mice , Tumor Necrosis Factor Ligand Superfamily Member 13/genetics , Tumor Necrosis Factor Ligand Superfamily Member 13/pharmacology
7.
Ann Neurol ; 85(3): 406-420, 2019 03.
Article in English | MEDLINE | ID: mdl-30635946

ABSTRACT

OBJECTIVE: The two related tumor necrosis factor members a proliferation-inducing ligand (APRIL) and B-cell activation factor (BAFF) are currently targeted in autoimmune diseases as B-cell regulators. In multiple sclerosis (MS), combined APRIL/BAFF blockade led to unexpected exacerbated inflammation in the central nervous system (CNS) of patients. Here, we investigate the role of the APRIL/BAFF axis in the CNS. METHODS: APRIL expression was analyzed in MS lesions by immunohistochemistry. The in vivo role of APRIL was assessed in the murine MS model, experimental autoimmune encephalitis (EAE). Functional in vitro studies were performed with human and mouse astrocytes. RESULTS: APRIL was expressed in lesions from EAE. In its absence, the disease was worst. Lesions from MS patients also showed APRIL expression upon infiltration of macrophages. Notably, all the APRIL secreted by these macrophages specifically targeted astrocytes. The upregulation of chondroitin sulfate proteoglycan, sometimes bearing chondroitin sulfate of type E sugar moieties, binding APRIL, in reactive astrocytes explained the latter selectivity. Astrocytes responded to APRIL by producing a sufficient amount of IL-10 to dampen antigen-specific T-cell proliferation and pathogenic cytokine secretion. Finally, an intraspinal delivery of recombinant APRIL before disease onset, shortly reduced EAE symptoms. Repeated intravenous injections of recombinant APRIL before and even at disease onset also had an effect. INTERPRETATION: Our data show that APRIL mediates an anti-inflammatory response from astrocytes in MS lesions. This protective activity is not shared with BAFF. ANN NEUROL 2019;85:406-420.


Subject(s)
Astrocytes/metabolism , B-Cell Activating Factor/metabolism , Encephalomyelitis, Autoimmune, Experimental/metabolism , Multiple Sclerosis/metabolism , Tumor Necrosis Factor Ligand Superfamily Member 13/metabolism , Adult , Aged , Animals , Astrocytes/immunology , Astrocytes/pathology , Cell Proliferation , Chondroitin Sulfate Proteoglycans/metabolism , Chondroitin Sulfates/metabolism , Cytokines/immunology , Disease Models, Animal , Encephalomyelitis, Autoimmune, Experimental/immunology , Encephalomyelitis, Autoimmune, Experimental/pathology , Female , Humans , Immunohistochemistry , Interleukin-10/immunology , Macrophages/pathology , Male , Mice , Mice, Knockout , Middle Aged , Multiple Sclerosis/immunology , Multiple Sclerosis/pathology , Reverse Transcriptase Polymerase Chain Reaction , T-Lymphocytes/immunology , Tumor Necrosis Factor Ligand Superfamily Member 13/genetics , Tumor Necrosis Factor Ligand Superfamily Member 13/pharmacology
8.
Int J Radiat Oncol Biol Phys ; 103(2): 511-520, 2019 02 01.
Article in English | MEDLINE | ID: mdl-30243572

ABSTRACT

PURPOSE: Pediatric cranial radiation therapy results in lasting changes in brain structure. Though different facets of radiation response have been characterized, the relative contributions of each to altered development is unclear. We sought to determine the role of radiation-induced programmed cell death, as mediated by the Trp53 (p53) gene, on neuroanatomic development. METHODS AND MATERIALS: Mice having a conditional knockout of p53 (p53KO) or wildtype p53 (WT) were irradiated with a whole-brain dose of 7 Gy (IR; n = 30) or 0 Gy (sham; n = 28) at 16 days of age. In vivo magnetic resonance imaging was performed before irradiation and at 4 time points after irradiation, until 3 months posttreatment, followed by ex vivo magnetic resonance imaging and immunohistochemistry. The role of p53 in development was assessed at 6 weeks of age in another group of untreated mice (n = 37). RESULTS: Neuroanatomic development in p53KO mice was normal. After cranial irradiation, alterations in neuroanatomy were detectable in WT mice and emerged through 2 stages: an early volume loss within 1 week and decreased growth through development. In many structures, the early volume loss was partially mitigated by p53KO. However, p53KO had a neutral or negative impact on growth; thus, p53KO did not widely improve volume at endpoint. Partial volume recovery was observed in the dentate gyrus and olfactory bulbs of p53KO-IR mice, with corresponding increases in neurogenesis compared with WT-IR mice. CONCLUSIONS: Although p53 is known to play an important role in mediating radiation-induced apoptosis, this is the first study to look at the cumulative effect of p53KO through development after cranial irradiation across the entire brain. It is clear that apoptosis plays an important role in volume loss early after radiation therapy. This early preservation alone was insufficient to normalize brain development on the whole, but regions reliant on neurogenesis exhibited a significant benefit.


Subject(s)
Brain/metabolism , Brain/radiation effects , Radiotherapy/methods , Tumor Suppressor Protein p53/genetics , Aged , Animals , Apoptosis , Brain/pathology , Cranial Irradiation , Dentate Gyrus/radiation effects , Genes, p53 , Humans , Image Processing, Computer-Assisted , Immunohistochemistry , Magnetic Resonance Imaging , Mice , Mice, Inbred C57BL , Mice, Knockout , Neurogenesis/radiation effects , Olfactory Bulb/radiation effects
9.
Neuro Oncol ; 20(6): 788-798, 2018 05 18.
Article in English | MEDLINE | ID: mdl-29228390

ABSTRACT

Background: Children with brain tumors treated with cranial radiation therapy (RT) often exhibit cognitive late effects, commonly associated with reduced white matter (WM) volume and decreased neurogenesis. The impact of radiation damage in particular regions or tissues on brain development as a whole has not been elucidated. Methods: We delivered whole-brain or focal radiation (8 Gy single dose) to infant mice. Focal treatments targeted white matter (anterior commissure), neuronal (olfactory bulbs), or neurogenic (subventricular zone) regions. High-resolution ex vivo MRI was used to assess radiation-induced volume differences. Immunohistochemistry for myelin basic protein and doublecortin was performed to assess associated cellular changes within white matter and related to neurogenesis, respectively. Results: Both whole-brain and focal RT in infancy resulted in volume deficits in young adulthood, with whole-brain RT resulting in the largest deficits. RT of the anterior commissure, surprisingly, showed no impact on its volume or on brain development as a whole. In contrast, RT of the olfactory bulbs resulted in off-target volume reduction in the anterior commissure and decreased subventricular zone neurogenesis. RT of the subventricular zone likewise produced volume deficits in both the olfactory bulbs and the anterior commissure. Similar off-target effects were found in the corpus callosum and parietal cortex. Conclusions: Our results demonstrate that radiation damage locally can have important off-target consequences for brain development. These data suggest that WM may be less radiosensitive than volume change alone would indicate and have implications for region-sparing radiation treatments aimed at reducing cognitive late effects.


Subject(s)
Brain/pathology , Cranial Irradiation/adverse effects , Myelin Sheath/pathology , Neurogenesis/radiation effects , White Matter/pathology , Animals , Brain/radiation effects , Magnetic Resonance Imaging , Mice , Myelin Sheath/radiation effects , White Matter/radiation effects
SELECTION OF CITATIONS
SEARCH DETAIL
...