Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Main subject
Language
Publication year range
1.
Plants (Basel) ; 10(8)2021 Aug 03.
Article in English | MEDLINE | ID: mdl-34451640

ABSTRACT

Jute (Corchorus spp.) belongs to the Malvaceae family, and there are two species of jute, C. capsularis and C. olitorious. It is the second-largest natural bast fiber in the world according to production, which has diverse uses not only as a fiber but also as multiple industrial materials. Because of climate change, plants experience various stressors such as salt, drought, heat, cold, metal/metalloid toxicity, and flooding. Although jute is particularly adapted to grow in hot and humid climates, it is grown under a wide variety of climatic conditions and is relatively tolerant to some environmental adversities. However, abiotic stress often restricts its growth, yield, and quality significantly. Abiotic stress negatively affects the metabolic activities, growth, physiology, and fiber yield of jute. One of the major consequences of abiotic stress on the jute plant is the generation of reactive oxygen species, which lead to oxidative stress that damages its cellular organelles and biomolecules. However, jute's responses to abiotic stress mainly depend on the plant's age and type and duration of stress. Therefore, understanding the abiotic stress responses and the tolerance mechanism would help plant biologists and agronomists in developing climate-smart jute varieties and suitable cultivation packages for adverse environmental conditions. In this review, we summarized the best possible recent literature on the plant abiotic stress factors and their influence on jute plants. We described the possible approaches for stress tolerance mechanisms based on the available literature.

2.
Plant Physiol Biochem ; 167: 449-458, 2021 Oct.
Article in English | MEDLINE | ID: mdl-34411784

ABSTRACT

The sulfhydryl bioregulator thiourea (TU) is effective in ameliorating the negative impact of different abiotic stresses in plants. To explore the significant performance of TU (5 mM TU, as foliar spray) in conferring mild (25% depletion of water from field capacity, FC), moderate (50% depletion from FC) and severe (75% depletion from FC) drought stress (applied at 25 days after sowing), physiological and biochemical responses of two chickpea (Cicer arietinum L.) cultivars (cv. BARI Chola-7 and BARI Chola-9) were investigated in the current study. Shoot fresh weight, dry weight, chlorophyll content and leaf relative water content reduced noticeably in mild, moderate and severe drought stresses over control. A sharp increase of H2O2 accumulation, thiobarbituric acid reactive substances and proline content were noticed at any level of drought stress which further declined in TU-treated drought-stressed plants. Thiourea-foliar application also increased ascorbate and glutathione contents and upregulated antioxidant enzyme activities, compared to drought-stressed plants alone. Thiourea-induced increased glyoxalase I and glyoxalase II activities are the indications of upregulated methylglyoxal detoxification system. Enhancement of antioxidant defense and glyoxalase system, osmoregulation and protection of photosynthetic pigments by TU improved growth, imparted oxidative stress tolerance, ameliorated ROS toxicity and improved physiology of chickpea plants under drought stress.


Subject(s)
Cicer , Droughts , Hydrogen Peroxide , Reactive Oxygen Species , Thiourea/pharmacology
3.
Front Plant Sci ; 12: 792770, 2021.
Article in English | MEDLINE | ID: mdl-35046979

ABSTRACT

Selenium (Se) supplementation can restrict metal uptake by roots and translocation to shoots, which is one of the vital stress tolerance mechanisms. Selenium can also enhance cellular functions like membrane stability, mineral nutrition homeostasis, antioxidant response, photosynthesis, and thus improve plant growth and development under metal/metalloid stress. Metal/metalloid toxicity decreases crop productivity and uptake of metal/metalloid through food chain causes health hazards. Selenium has been recognized as an element essential for the functioning of the human physiology and is a beneficial element for plants. Low concentrations of Se can mitigate metal/metalloid toxicity in plants and improve tolerance in various ways. Selenium stimulates the biosynthesis of hormones for remodeling the root architecture that decreases metal uptake. Growth enhancing function of Se has been reported in a number of studies, which is the outcome of improvement of various physiological features. Photosynthesis has been improved by Se supplementation under metal/metalloid stress due to the prevention of pigment destruction, sustained enzymatic activity, improved stomatal function, and photosystem activity. By modulating the antioxidant defense system Se mitigates oxidative stress. Selenium improves the yield and quality of plants. However, excessive concentration of Se exerts toxic effects on plants. This review presents the role of Se for improving plant tolerance to metal/metalloid stress.

SELECTION OF CITATIONS
SEARCH DETAIL
...