Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Genome Biol ; 25(1): 82, 2024 Apr 02.
Article in English | MEDLINE | ID: mdl-38566187

ABSTRACT

The spatial organization of molecules in a cell is essential for their functions. While current methods focus on discerning tissue architecture, cell-cell interactions, and spatial expression patterns, they are limited to the multicellular scale. We present Bento, a Python toolkit that takes advantage of single-molecule information to enable spatial analysis at the subcellular scale. Bento ingests molecular coordinates and segmentation boundaries to perform three analyses: defining subcellular domains, annotating localization patterns, and quantifying gene-gene colocalization. We demonstrate MERFISH, seqFISH + , Molecular Cartography, and Xenium datasets. Bento is part of the open-source Scverse ecosystem, enabling integration with other single-cell analysis tools.


Subject(s)
Ecosystem , Propanolamines , Gene Expression Profiling , Cell Communication , Single-Cell Analysis , Transcriptome
2.
PLoS One ; 18(11): e0293322, 2023.
Article in English | MEDLINE | ID: mdl-37917746

ABSTRACT

Disparities for women and minorities in science, technology, engineering, and math (STEM) careers have continued even amidst mounting evidence for the superior performance of diverse workforces. In response, we launched the Diversity and Science Lecture series, a cross-institutional platform where junior life scientists present their research and comment on diversity, equity, and inclusion in STEM. We characterize speaker representation from 79 profiles and investigate topic noteworthiness via quantitative content analysis of talk transcripts. Nearly every speaker discussed interpersonal support, and three-fifths of speakers commented on race or ethnicity. Other topics, such as sexual and gender minority identity, were less frequently addressed but highly salient to the speakers who mentioned them. We found that significantly co-occurring topics reflected not only conceptual similarity, such as terms for racial identities, but also intersectional significance, such as identifying as a Latina/Hispanic woman or Asian immigrant, and interactions between concerns and identities, including the heightened value of friendship to the LGBTQ community, which we reproduce using transcripts from an independent seminar series. Our approach to scholar profiles and talk transcripts serves as an example for transmuting hundreds of hours of scholarly discourse into rich datasets that can power computational audits of speaker diversity and illuminate speakers' personal and professional priorities.


Subject(s)
Diversity, Equity, Inclusion , Ethnicity , Female , Humans , Minority Groups , Technology
3.
Nat Cell Biol ; 24(6): 815-824, 2022 06.
Article in English | MEDLINE | ID: mdl-35697782

ABSTRACT

RNA processing plays a central role in accurately transmitting genetic information into functional RNA and protein regulators. To fully appreciate the RNA life-cycle, tools to observe RNA with high spatial and temporal resolution are critical. Here we review recent advances in RNA imaging and highlight how they will propel the field of RNA biology. We discuss current trends in RNA imaging and their potential to elucidate unanswered questions in RNA biology.


Subject(s)
RNA Processing, Post-Transcriptional , RNA , Biology , RNA/genetics , RNA, Untranslated
4.
Nat Methods ; 17(6): 636-642, 2020 06.
Article in English | MEDLINE | ID: mdl-32393832

ABSTRACT

Genetic screens using pooled CRISPR-based approaches are scalable and inexpensive, but restricted to standard readouts, including survival, proliferation and sortable markers. However, many biologically relevant cell states involve cellular and subcellular changes that are only accessible by microscopic visualization, and are currently impossible to screen with pooled methods. Here we combine pooled CRISPR-Cas9 screening with microraft array technology and high-content imaging to screen image-based phenotypes (CRaft-ID; CRISPR-based microRaft followed by guide RNA identification). By isolating microrafts that contain genetic clones harboring individual guide RNAs (gRNA), we identify RNA-binding proteins (RBPs) that influence the formation of stress granules, the punctate protein-RNA assemblies that form during stress. To automate hit identification, we developed a machine-learning model trained on nuclear morphology to remove unhealthy cells or imaging artifacts. In doing so, we identified and validated previously uncharacterized RBPs that modulate stress granule abundance, highlighting the applicability of our approach to facilitate image-based pooled CRISPR screens.


Subject(s)
Clustered Regularly Interspaced Short Palindromic Repeats/genetics , Microscopy, Confocal/methods , Oxidative Stress/genetics , RNA, Guide, Kinetoplastida/genetics , RNA-Binding Proteins/genetics , Tissue Array Analysis/methods , CRISPR-Cas Systems/genetics , Cytoplasm/metabolism , Humans , Machine Learning , Protein Aggregates/genetics
5.
Analyst ; 142(24): 4618-4622, 2017 Dec 04.
Article in English | MEDLINE | ID: mdl-29131209

ABSTRACT

Droplet microfluidics is valuable for applications in chemistry and biology, but generates massive numbers of droplets that must be analyzed and sorted. Here, we describe a simple approach to bulk double emulsify microfluidic emulsions for analysis and sorting with commercial flow cytometers. We illustrate the method by using it to identify droplets based on nucleic acid content. Though simple, our method provides a general approach for analyzing and sorting microfluidic droplets without custom microfluidic double emulsifiers or sorters.

6.
Nat Biotechnol ; 35(7): 640-646, 2017 Jul.
Article in English | MEDLINE | ID: mdl-28553940

ABSTRACT

The application of single-cell genome sequencing to large cell populations has been hindered by technical challenges in isolating single cells during genome preparation. Here we present single-cell genomic sequencing (SiC-seq), which uses droplet microfluidics to isolate, fragment, and barcode the genomes of single cells, followed by Illumina sequencing of pooled DNA. We demonstrate ultra-high-throughput sequencing of >50,000 cells per run in a synthetic community of Gram-negative and Gram-positive bacteria and fungi. The sequenced genomes can be sorted in silico based on characteristic sequences. We use this approach to analyze the distributions of antibiotic-resistance genes, virulence factors, and phage sequences in microbial communities from an environmental sample. The ability to routinely sequence large populations of single cells will enable the de-convolution of genetic heterogeneity in diverse cell populations.


Subject(s)
Chromosome Mapping/instrumentation , DNA Barcoding, Taxonomic/instrumentation , Genome/genetics , High-Throughput Nucleotide Sequencing/instrumentation , Lab-On-A-Chip Devices , Tissue Array Analysis/instrumentation , Cell Separation/instrumentation , Equipment Design , Equipment Failure Analysis
7.
Micromachines (Basel) ; 7(9)2016 Sep 06.
Article in English | MEDLINE | ID: mdl-30404331

ABSTRACT

Microfluidic devices are valuable for a variety of biotechnology applications, such as synthesizing biochemical libraries, screening enzymes, and analyzing single cells. However, normally, the devices are controlled using specialized pumps, which require expert knowledge to operate. Here, we demonstrate operation of poly(dimethylsiloxane) devices without pumps. We build a scaffold that holds the device and reagents to be infused in a format that can be inserted into a 50 mL falcon tube and spun in a common lab centrifuge. By controlling the device design and centrifuge spin speed, we infuse the reagents at controlled flow rates. We demonstrate the encapsulation and culture of clonal colonies of red and green Escherichia coli in droplets seeded from single cells.

SELECTION OF CITATIONS
SEARCH DETAIL
...