Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Nucleic Acids Res ; 52(8): 4483-4501, 2024 May 08.
Article in English | MEDLINE | ID: mdl-38587191

ABSTRACT

Messenger RNA precursors (pre-mRNA) generally undergo 3' end processing by cleavage and polyadenylation (CPA), which is specified by a polyadenylation site (PAS) and adjacent RNA sequences and regulated by a large variety of core and auxiliary CPA factors. To date, most of the human CPA factors have been discovered through biochemical and proteomic studies. However, genetic identification of the human CPA factors has been hampered by the lack of a reliable genome-wide screening method. We describe here a dual fluorescence readthrough reporter system with a PAS inserted between two fluorescent reporters. This system enables measurement of the efficiency of 3' end processing in living cells. Using this system in combination with a human genome-wide CRISPR/Cas9 library, we conducted a screen for CPA factors. The screens identified most components of the known core CPA complexes and other known CPA factors. The screens also identified CCNK/CDK12 as a potential core CPA factor, and RPRD1B as a CPA factor that binds RNA and regulates the release of RNA polymerase II at the 3' ends of genes. Thus, this dual fluorescence reporter coupled with CRISPR/Cas9 screens reliably identifies bona fide CPA factors and provides a platform for investigating the requirements for CPA in various contexts.


Subject(s)
CRISPR-Cas Systems , Genes, Reporter , RNA Precursors , mRNA Cleavage and Polyadenylation Factors , Humans , Cyclin-Dependent Kinases/metabolism , Cyclin-Dependent Kinases/genetics , Genome, Human , HEK293 Cells , mRNA Cleavage and Polyadenylation Factors/metabolism , mRNA Cleavage and Polyadenylation Factors/genetics , Polyadenylation , RNA Cleavage , RNA Polymerase II/metabolism , RNA Precursors/metabolism , RNA Precursors/genetics
2.
Mol Cell ; 82(17): 3135-3150.e9, 2022 09 01.
Article in English | MEDLINE | ID: mdl-35914531

ABSTRACT

Alternative polyadenylation (APA) enhances gene regulatory potential by increasing the diversity of mRNA transcripts. 3' UTR shortening through APA correlates with enhanced cellular proliferation and is a widespread phenomenon in tumor cells. Here, we show that the ubiquitously expressed transcription factor Sp1 binds RNA in vivo and is a common repressor of distal poly(A) site usage. RNA sequencing identified 2,344 genes (36% of the total mapped mRNA transcripts) with lengthened 3' UTRs upon Sp1 depletion. Sp1 preferentially binds the 3' UTRs of such lengthened transcripts and inhibits cleavage at distal sites by interacting with the subunits of the core cleavage and polyadenylation (CPA) machinery. The 3' UTR lengths of Sp1 target genes in breast cancer patient RNA-seq data correlate with Sp1 expression levels, implicating Sp1-mediated APA regulation in modulating tumorigenic properties. Taken together, our findings provide insights into the mechanism for dynamic APA regulation by unraveling a previously unknown function of the DNA-binding transcription factor Sp1.


Subject(s)
Poly A , Polyadenylation , 3' Untranslated Regions , Humans , Poly A/metabolism , RNA, Messenger/metabolism , Sp1 Transcription Factor/genetics , Sp1 Transcription Factor/metabolism , Zinc/metabolism
3.
iScience ; 25(1): 103562, 2022 Jan 21.
Article in English | MEDLINE | ID: mdl-34901782

ABSTRACT

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) nucleocapsid (N) protein is essential for viral replication, making it a promising target for antiviral drug and vaccine development. SARS-CoV-2 infected patients exhibit an uncoordinated immune response; however, the underlying mechanistic details of this imbalance remain obscure. Here, starting from a functional proteomics workflow, we cataloged the protein-protein interactions of SARS-CoV-2 proteins, including an evolutionarily conserved specific interaction of N with the stress granule resident proteins G3BP1 and G3BP2. N localizes to stress granules and sequesters G3BPs away from their typical interaction partners, thus attenuating stress granule formation. We found that N binds directly to host mRNAs in cells, with a preference for 3' UTRs, and modulates target mRNA stability. We show that the N protein rewires the G3BP1 mRNA-binding profile and suppresses the physiological stress response of host cells, which may explain the imbalanced immune response observed in SARS-CoV-2 infected patients.

4.
Nucleic Acids Res ; 49(11): 6196-6212, 2021 06 21.
Article in English | MEDLINE | ID: mdl-34086947

ABSTRACT

Retinoblastoma-binding proteins 4 and 7 (RBBP4 and RBBP7) are two highly homologous human histone chaperones. They function in epigenetic regulation as subunits of multiple chromatin-related complexes and have been implicated in numerous cancers. Due to their overlapping functions, our understanding of RBBP4 and 7, particularly outside of Opisthokonts, has remained limited. Here, we report that in the ciliate protozoan Tetrahymena thermophila a single orthologue of human RBBP4 and 7 proteins, RebL1, physically interacts with histone H4 and functions in multiple epigenetic regulatory pathways. Functional proteomics identified conserved functional links for Tetrahymena RebL1 protein as well as human RBBP4 and 7. We found that putative subunits of multiple chromatin-related complexes including CAF1, Hat1, Rpd3, and MuvB, co-purified with RebL1 during Tetrahymena growth and conjugation. Iterative proteomics analyses revealed that the cell cycle regulatory MuvB-complex in Tetrahymena is composed of at least five subunits including evolutionarily conserved Lin54, Lin9 and RebL1 proteins. Genome-wide analyses indicated that RebL1 and Lin54 (Anqa1) bind within genic and intergenic regions. Moreover, Anqa1 targets primarily promoter regions suggesting a role for Tetrahymena MuvB in transcription regulation. RebL1 depletion inhibited cellular growth and reduced the expression levels of Anqa1 and Lin9. Consistent with observations in glioblastoma tumors, RebL1 depletion suppressed DNA repair protein Rad51 in Tetrahymena, thus underscoring the evolutionarily conserved functions of RBBP4/7 proteins. Our results suggest the essentiality of RebL1 functions in multiple epigenetic regulatory complexes in which it impacts transcription regulation and cellular viability.


Subject(s)
Histone Chaperones/metabolism , Protozoan Proteins/metabolism , Tetrahymena thermophila/metabolism , Amino Acid Sequence , Bacterial Proteins/metabolism , Biological Evolution , Conserved Sequence , DNA/metabolism , DNA-Binding Proteins/metabolism , Epigenesis, Genetic , Gene Expression , HEK293 Cells , Histone Chaperones/chemistry , Histone Chaperones/physiology , Histones/metabolism , Humans , Neoplasms/metabolism , Neoplasms/mortality , Oncogenes , Protozoan Proteins/chemistry , Protozoan Proteins/physiology , Retinoblastoma-Binding Protein 4/metabolism , Retinoblastoma-Binding Protein 7/metabolism , Tetrahymena thermophila/genetics , Tetrahymena thermophila/growth & development
SELECTION OF CITATIONS
SEARCH DETAIL
...