Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Proc Biol Sci ; 291(2017): 20222584, 2024 Feb 28.
Article in English | MEDLINE | ID: mdl-38378153

ABSTRACT

All mobile organisms forage for resources, choosing how and when to search for new opportunities by comparing current returns with the average for the environment. In humans, nomadic lifestyles favouring exploration have been associated with genetic mutations implicated in attention deficit hyperactivity disorder (ADHD), inviting the hypothesis that this condition may impact foraging decisions in the general population. Here we tested this pre-registered hypothesis by examining how human participants collected resources in an online foraging task. On every trial, participants chose either to continue to collect rewards from a depleting patch of resources or to replenish the patch. Participants also completed a well-validated ADHD self-report screening assessment at the end of sessions. Participants departed resource patches sooner when travel times between patches were shorter than when they were longer, as predicted by optimal foraging theory. Participants whose scores on the ADHD scale crossed the threshold for a positive screen departed patches significantly sooner than participants who did not meet this criterion. Participants meeting this threshold for ADHD also achieved higher reward rates than individuals who did not. Our findings suggest that ADHD attributes may confer foraging advantages in some environments and invite the possibility that this condition may reflect an adaptation favouring exploration over exploitation.


Subject(s)
Attention Deficit Disorder with Hyperactivity , Humans , Attention Deficit Disorder with Hyperactivity/diagnosis , Reward , Life Style , Self Report
2.
Acta Psychol (Amst) ; 226: 103560, 2022 Jun.
Article in English | MEDLINE | ID: mdl-35338831

ABSTRACT

Francis Galton first reported that humans mentally organize numbers from left to right on a mental number line (1880). This spatial-numerical association was long considered to result from writing and reading habits. More recently though, newborns and animals showed a left-to-right oriented spatial numerical association challenging the primary role assigned to culture in determining the link between number and space. Despite growing evidence supporting the intrinsic association between number and space in different species, its adaptive value is still largely unknown. Here we tested for an advantage in identification of left versus right target positions in 3- to 6-year-old children. Children watched as a toy was hidden under one of 10 linearly arranged identical cups and were then asked to help a stuffed animal retrieve the toy. On each trial, the toy was hidden in the 2nd, 3rd, or 4th cup, from the left or right. To prevent children from staring at the target cup, they were asked to pick up the stuffed animal from under their chair after witnessing the hiding of the toy and then to help the stuffed animal find the toy. Older children were more accurate than younger children. Children exhibited a serial position effect, with performance higher for more exterior targets. Remarkably, children also showed a left bias: they remembered the left targets better than the right targets. Only the youngest children were dramatically influenced by the location of the experimenter during search. Additional analyses support the hypothesis that children used a left-to-right oriented searching strategy in this spatial/ordinal task.


Subject(s)
Reading , Space Perception , Adolescent , Animals , Bias , Child , Habits , Humans , Infant, Newborn , Writing
SELECTION OF CITATIONS
SEARCH DETAIL
...