Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Am J Pathol ; 180(1): 337-50, 2012 Jan.
Article in English | MEDLINE | ID: mdl-22074738

ABSTRACT

ß-Secretase, the rate-limiting enzymatic activity in the production of the amyloid-ß (Aß) peptide, is a major target of Alzheimer's disease (AD) therapeutics. There are two forms of the enzyme: ß-site Aß precursor protein cleaving enzyme (BACE) 1 and BACE2. Although BACE1 increases in late-stage AD, little is known about BACE2. We conducted a detailed examination of BACE2 in patients with preclinical to late-stage AD, including amnestic mild cognitive impairment, and age-matched controls, cases of frontotemporal dementia, and Down's syndrome. BACE2 protein and enzymatic activity increased as early as preclinical AD and were found in neurons and astrocytes. Although the levels of total BACE2 mRNA were unchanged, the mRNA for BACE2 splice form C (missing exon 7) increased in parallel with BACE2 protein and activity. BACE1 and BACE2 were strongly correlated with each other at all levels, suggesting that their regulatory mechanisms may be largely shared. BACE2 was also elevated in frontotemporal dementia but not in Down's syndrome, even in patients with substantial Aß deposition. Thus, expression of both forms of ß-secretase are linked and may play a combined role in human neurologic disease. A better understanding of the normal functions of BACE1 and BACE2, and how these change in different disease states, is essential for the future development of AD therapeutics.


Subject(s)
Amyloid Precursor Protein Secretases/metabolism , Aspartic Acid Endopeptidases/metabolism , Aged , Aged, 80 and over , Alzheimer Disease/metabolism , Amyloid beta-Peptides/metabolism , Brain Chemistry , Female , Humans , Male , Neprilysin/metabolism , Neurons/metabolism , RNA, Messenger/metabolism
2.
Neurobiol Dis ; 39(3): 449-56, 2010 Sep.
Article in English | MEDLINE | ID: mdl-20493261

ABSTRACT

Sporadic inclusion body myositis (sIBM) is a common age-related inflammatory myopathy characterized by the presence of intracellular inclusions that contain the amyloid-beta (Abeta) peptide, a derivative of the amyloid precursor protein (APP). Abeta is believed to cause Alzheimer's disease (AD), suggesting that a link may exist between the two diseases. If AD and sIBM are linked, then treatments that lower Abeta in brain may prove useful for sIBM. To test this hypothesis, transgenic mice that overexpress APP in skeletal muscle were treated for 6 months with a variety of nonsteroidal anti-inflammatory drugs (NSAIDs; naproxen, ibuprofen, carprofen or R-flurbiprofen), a subset of which reduce Abeta in brain and cultured cells. Only ibuprofen lowered Abeta in muscle, and this was not accompanied by corresponding improvements in phenotype. These results indicate that the effects of NSAIDs in the brain may be different from other tissues and that Abeta alone cannot account for skeletal muscle dysfunction in these mice.


Subject(s)
Amyloid beta-Peptides/metabolism , Amyloid beta-Protein Precursor/metabolism , Anti-Inflammatory Agents, Non-Steroidal/pharmacology , Muscle, Skeletal/drug effects , Analysis of Variance , Animals , Mice , Mice, Transgenic , Muscle, Skeletal/metabolism , Muscle, Skeletal/pathology , Statistics, Nonparametric
3.
J Neurochem ; 112(4): 1045-53, 2010 Feb.
Article in English | MEDLINE | ID: mdl-19968762

ABSTRACT

beta-Secretase is the rate limiting enzymatic activity in the production of the amyloid-beta peptide (Abeta) and is thought to be involved in Alzheimer's disease (AD) pathogenesis. Although BACE1 (beta-site APP Cleaving Enzyme 1, EC 3.4.23.46) has received significant attention, the related BACE2 (EC 3.4.23.45) has not. Though BACE2 is also expressed in the brain, its potential role in AD has not been resolved. In this study, we compared the activities of both BACE1 and BACE2, which were isolated from the same samples of frontal cortex from both AD-affected individuals and age-matched controls. BACE1 activity showed a significant positive correlation with the amount of extractable Abeta, and BACE1 protein and activity were significantly increased in AD cases. Unexpectedly, there were substantial total amounts of BACE2 protein and enzymatic activity in the human brain. BACE2 activity did not change significantly in the AD brain, and was not related to Abeta concentration. These data indicate that BACE1 likely accounts for most of the Abeta produced in the human brain, and that BACE2 activity is not a likely contributor. However, as both forms of BACE compete for the same substrate pool, even small changes in BACE2 activity could have consequences for human disease.


Subject(s)
Alzheimer Disease/enzymology , Amyloid Precursor Protein Secretases/metabolism , Aspartic Acid Endopeptidases/metabolism , Brain/enzymology , Aged , Aged, 80 and over , Alzheimer Disease/pathology , Amyloid beta-Peptides , Amyloid beta-Protein Precursor/genetics , Amyloid beta-Protein Precursor/metabolism , Case-Control Studies , Enzyme-Linked Immunosorbent Assay , Female , Humans , Immunoprecipitation , Kidney/enzymology , Kidney/pathology , Male , Statistics as Topic , Time Factors
SELECTION OF CITATIONS
SEARCH DETAIL
...