Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Theor Appl Genet ; 128(7): 1407-19, 2015 Jul.
Article in English | MEDLINE | ID: mdl-25893467

ABSTRACT

KEY MESSAGE: The distribution of starch synthase I and starch branching enzyme IIb between the starch granule and amyloplast stroma plays an important role in determining endosperm amylose content of cereal grains. Starch synthase IIa (SSIIa) catalyses the polymerisation of intermediate length glucan chains of amylopectin in the endosperm of cereals. Mutations of SSIIa genes in barley and wheat and inactive SSIIa variant in rice induce similar effects on the starch structure and the amylose content, but the severity of the phenotypes is different. This study compared the levels of transcripts and partitioning of proteins of starch synthase I (SSI) and starch branching enzyme IIb (SBEIIb) inside and outside the starch granules in the developing endosperms of these ssIIa mutants and inactive SSIIa variant. Pleiotropic effects on starch granule-bound proteins suggested that the different effects of SSIIa mutations on endosperm amylose content of barley, wheat and rice are determined by the distribution of SSI and SBEIIb between the starch granule and amyloplast stroma in cereals. Regulation of starch synthesis in ssIIa mutants and inactive SSIIa variant may be at post-translational level or the altered amylopectin structure deprives the affinity of SSI and SBEIIb to amylopectin.


Subject(s)
Amylose/chemistry , Endosperm/chemistry , Hordeum/genetics , Oryza/genetics , Plant Proteins/genetics , Starch Synthase/genetics , Triticum/genetics , 1,4-alpha-Glucan Branching Enzyme/chemistry , DNA, Plant/genetics , Endosperm/enzymology , Genetic Pleiotropy , Genotype , Hordeum/enzymology , Mutation , Oryza/enzymology , Phenotype , Plastids/enzymology , Starch Synthase/chemistry , Triticum/enzymology
2.
Plant Sci ; 233: 95-106, 2015 Apr.
Article in English | MEDLINE | ID: mdl-25711817

ABSTRACT

The present study investigated the role of protein phosphorylation, and protein complex formation between key enzymes of amylopectin synthesis, in barley genotypes exhibiting "high amylose" phenotypes. Starch branching enzyme (SBE) down-regulated lines (ΔSBEIIa and ΔSBEIIb), starch synthase (SS)IIa (ssiia(-), sex6) and SSIII (ssiii(-), amo1) mutants were compared to a reference genotype, OAC Baxter. Down-regulation of either SBEIIa or IIb caused pleiotropic effects on SSI and starch phosphorylase (SP) and resulted in formation of novel protein complexes in which the missing SBEII isoform was substituted by SBEI and SP. In the ΔSBEIIb down-regulated line, soluble SP activity was undetectable. Nonetheless, SP was incorporated into a heteromeric protein complex with SBEI and SBEIIa and was readily detected in starch granules. In amo1, unlike other mutants, the data suggest that both SBEIIa and SBEIIb are in a protein complex with SSI and SSIIa. In the sex6 mutant no protein complexes involving SBEIIa or SBEIIb were detected in amyloplasts. Studies with Pro-Q Diamond revealed that GBSS, SSI, SSIIa, SBEIIb and SP are phosphorylated in their granule bound state. Alteration in the granule proteome in ΔSBEIIa and ΔSBEIIb lines, suggests that different protein complexes are involved in the synthesis of A and B granules.


Subject(s)
Down-Regulation , Hordeum/genetics , Plant Proteins/genetics , Proteome , Starch/biosynthesis , Hordeum/enzymology , Microscopy, Electron , Multienzyme Complexes/genetics , Multienzyme Complexes/metabolism , Mutation , Phosphorylation , Plant Proteins/metabolism , Starch/ultrastructure
3.
Biochem J ; 448(3): 373-87, 2012 Dec 15.
Article in English | MEDLINE | ID: mdl-22963372

ABSTRACT

The sugary-2 mutation in maize (Zea mays L.) is a result of the loss of catalytic activity of the endosperm-specific SS (starch synthase) IIa isoform causing major alterations to amylopectin architecture. The present study reports a biochemical and molecular analysis of an allelic variant of the sugary-2 mutation expressing a catalytically inactive form of SSIIa and sheds new light on its central role in protein-protein interactions and determination of the starch granule proteome. The mutant SSIIa revealed two amino acid substitutions, one being a highly conserved residue (Gly522→Arg) responsible for the loss of catalytic activity and the inability of the mutant SSIIa to bind to starch. Analysis of protein-protein interactions in sugary-2 amyloplasts revealed the same trimeric assembly of soluble SSI, SSIIa and SBE (starch-branching enzyme) IIb found in wild-type amyloplasts, but with greatly reduced activities of SSI and SBEIIb. Chemical cross-linking studies demonstrated that SSIIa is at the core of the complex, interacting with SSI and SBEIIb, which do not interact directly with each other. The sugary-2 mutant starch granules were devoid of amylopectin-synthesizing enzymes, despite the fact that the respective affinities of SSI and SBEIIb from sugary-2 for amylopectin were the same as observed in wild-type. The data support a model whereby granule-bound proteins involved in amylopectin synthesis are partitioned into the starch granule as a result of their association within protein complexes, and that SSIIa plays a crucial role in trafficking SSI and SBEIIb into the granule matrix.


Subject(s)
1,4-alpha-Glucan Branching Enzyme/chemistry , 1,4-alpha-Glucan Branching Enzyme/metabolism , Glucans/chemistry , Glycogen Synthase/chemistry , Plant Proteins/chemistry , Starch Synthase/chemistry , Starch/chemistry , 1,4-alpha-Glucan Branching Enzyme/genetics , Alleles , Amino Acid Sequence , Amylopectin/chemistry , Glucans/genetics , Glycogen Synthase/genetics , Molecular Sequence Data , Plant Proteins/genetics , Protein Binding/genetics , Starch/genetics , Starch Synthase/genetics , Zea mays/enzymology
4.
J Exp Bot ; 63(3): 1167-83, 2012 Feb.
Article in English | MEDLINE | ID: mdl-22121198

ABSTRACT

Amylose extender (ae(-)) starches characteristically have modified starch granule morphology resulting from amylopectin with reduced branch frequency and longer glucan chains in clusters, caused by the loss of activity of the major starch branching enzyme (SBE), which in maize endosperm is SBEIIb. A recent study with ae(-) maize lacking the SBEIIb protein (termed ae1.1 herein) showed that novel protein-protein interactions between enzymes of starch biosynthesis in the amyloplast could explain the starch phenotype of the ae1.1 mutant. The present study examined an allelic variant of the ae(-) mutation, ae1.2, which expresses a catalytically inactive form of SBEIIb. The catalytically inactive SBEIIb in ae1.2 lacks a 28 amino acid peptide (Val272-Pro299) and is unable to bind to amylopectin. Analysis of starch from ae1.2 revealed altered granule morphology and physicochemical characteristics distinct from those of the ae1.1 mutant as well as the wild-type, including altered apparent amylose content and gelatinization properties. Starch from ae1.2 had fewer intermediate length glucan chains (degree of polymerization 16-20) than ae1.1. Biochemical analysis of ae1.2 showed that there were differences in the organization and assembly of protein complexes of starch biosynthetic enzymes in comparison with ae1.1 (and wild-type) amyloplasts, which were also reflected in the composition of starch granule-bound proteins. The formation of stromal protein complexes in the wild-type and ae1.2 was strongly enhanced by ATP, and broken by phosphatase treatment, indicating a role for protein phosphorylation in their assembly. Labelling experiments with [γ-(32)P]ATP showed that the inactive form of SBEIIb in ae1.2 was phosphorylated, both in the monomeric form and in association with starch synthase isoforms. Although the inactive SBEIIb was unable to bind starch directly, it was strongly associated with the starch granule, reinforcing the conclusion that its presence in the granules is a result of physical association with other enzymes of starch synthesis. In addition, an Mn(2+)-based affinity ligand, specific for phosphoproteins, was used to show that the granule-bound forms of SBEIIb in the wild-type and ae1.2 were phosphorylated, as was the granule-bound form of SBEI found in ae1.2 starch. The data strongly support the hypothesis that the complement of heteromeric complexes of proteins involved in amylopectin synthesis contributes to the fine structure and architecture of the starch granule.


Subject(s)
Amylose/metabolism , Plants, Genetically Modified/metabolism , Starch/metabolism , Zea mays/metabolism , 1,4-alpha-Glucan Branching Enzyme/genetics , 1,4-alpha-Glucan Branching Enzyme/metabolism , Alleles , Amylopectin/genetics , Amylopectin/metabolism , Mutation , Plant Proteins/genetics , Plant Proteins/metabolism , Plants, Genetically Modified/genetics , Plastids/metabolism , Starch/genetics , Starch Synthase/genetics , Starch Synthase/metabolism , Zea mays/genetics
5.
J AOAC Int ; 87(3): 740-8, 2004.
Article in English | MEDLINE | ID: mdl-15287674

ABSTRACT

The increased incidence in many countries in lifestyle diseases such as colorectal cancer, cardiovascular disease, and diabetes has led to an enhanced interest in disease-prevention measures that can be delivered to target populations through diet. Resistant starch (RS) is emerging as an important dietary component that has the potential to reduce the incidence of bowel health disorders. However, the range of crop species that can serve as effective sources of RS is limited. In this paper the state of knowledge of the starch biosynthesis pathway is reviewed and opportunities to manipulate crop genetics in order to generate additional sources of RS are discussed. The need for a "whole of chain" approach to delivery of RS to the consumer is highlighted because of the impact that different food-processing technologies can have in maintaining, enhancing, or destroying the RS potential of a raw material or food.


Subject(s)
Plants/metabolism , Starch/biosynthesis , Amylose/chemistry , Dietary Fiber , Food Analysis , Mutation/genetics , Plants/chemistry , Plants/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...