Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 14 de 14
Filter
Add more filters










Publication year range
1.
Biol Reprod ; 102(3): 607-619, 2020 03 13.
Article in English | MEDLINE | ID: mdl-31621839

ABSTRACT

Heritable mitochondrial DNA (mtDNA) mutations are common, yet only a few recurring pathogenic mtDNA variants account for the majority of known familial cases in humans. Purifying selection in the female germline is thought to be responsible for the elimination of most harmful mtDNA mutations during oogenesis. Here we show that deleterious mtDNA mutations are abundant in ovulated mature mouse oocytes and preimplantation embryos recovered from PolG mutator females but not in their live offspring. This implies that purifying selection acts not in the maternal germline per se, but during post-implantation development. We further show that oocyte mtDNA mutations can be captured and stably maintained in embryonic stem cells and then reintroduced into chimeras, thereby allowing examination of the effects of specific mutations on fetal and postnatal development.


Subject(s)
Blastocyst/metabolism , DNA, Mitochondrial/genetics , Mutation , Oocytes/metabolism , Animals , DNA, Mitochondrial/metabolism , Embryonic Development/genetics , Female , Mice , Mitochondria/genetics , Mitochondria/metabolism , Oogenesis/genetics
4.
PLoS One ; 13(7): e0201304, 2018.
Article in English | MEDLINE | ID: mdl-30040856

ABSTRACT

The accumulation of acquired mitochondrial genome (mtDNA) mutations with aging in somatic cells has been implicated in mitochondrial dysfunction and linked to age-onset diseases in humans. Here, we asked if somatic mtDNA mutations are also associated with aging in the mouse. MtDNA integrity in multiple organs and tissues in young and old (2-34 months) wild type (wt) mice was investigated by whole genome sequencing. Remarkably, no acquired somatic mutations were detected in tested tissues. However, we identified several non-synonymous germline mtDNA variants whose heteroplasmy levels (ratio of normal to mutant mtDNA) increased significantly with aging suggesting clonal expansion of inherited mtDNA mutations. Polg mutator mice, a model for premature aging, exhibited both germline and somatic mtDNA mutations whose numbers and heteroplasmy levels increased significantly with age implicating involvement in premature aging. Our results suggest that, in contrast to humans, acquired somatic mtDNA mutations do not accompany the aging process in wt mice.


Subject(s)
Aging , DNA, Mitochondrial/genetics , Mice/genetics , Mutation , Aging, Premature/genetics , Aging, Premature/veterinary , Animals , DNA Polymerase gamma/genetics , Female , Germ Cells/metabolism , Male , Mice/embryology , Mice/physiology , Mice, Inbred C57BL , Mitochondria/genetics
5.
Nature ; 548(7668): 413-419, 2017 08 24.
Article in English | MEDLINE | ID: mdl-28783728

ABSTRACT

Genome editing has potential for the targeted correction of germline mutations. Here we describe the correction of the heterozygous MYBPC3 mutation in human preimplantation embryos with precise CRISPR-Cas9-based targeting accuracy and high homology-directed repair efficiency by activating an endogenous, germline-specific DNA repair response. Induced double-strand breaks (DSBs) at the mutant paternal allele were predominantly repaired using the homologous wild-type maternal gene instead of a synthetic DNA template. By modulating the cell cycle stage at which the DSB was induced, we were able to avoid mosaicism in cleaving embryos and achieve a high yield of homozygous embryos carrying the wild-type MYBPC3 gene without evidence of off-target mutations. The efficiency, accuracy and safety of the approach presented suggest that it has potential to be used for the correction of heritable mutations in human embryos by complementing preimplantation genetic diagnosis. However, much remains to be considered before clinical applications, including the reproducibility of the technique with other heterozygous mutations.


Subject(s)
Carrier Proteins/genetics , Embryo, Mammalian/metabolism , Gene Editing/methods , Mutation/genetics , Adult , Alleles , Blastocyst/metabolism , Blastocyst/pathology , Cell Division , Clustered Regularly Interspaced Short Palindromic Repeats/genetics , DNA Breaks, Double-Stranded , Embryo, Mammalian/pathology , Gene Targeting , Genetic Complementation Test , Heterozygote , Homozygote , Humans , Male , Mosaicism , Recombinational DNA Repair/genetics , S Phase , Templates, Genetic , Zygote/metabolism , Zygote/pathology
6.
Cell Stem Cell ; 20(1): 112-119, 2017 01 05.
Article in English | MEDLINE | ID: mdl-27840020

ABSTRACT

Oocyte defects lie at the heart of some forms of infertility and could potentially be addressed therapeutically by alternative routes for oocyte formation. Here, we describe the generation of functional human oocytes following nuclear transfer of first polar body (PB1) genomes from metaphase II (MII) oocytes into enucleated donor MII cytoplasm (PBNT). The reconstructed oocytes supported the formation of de novo meiotic spindles and, after fertilization with sperm, meiosis completion and formation of normal diploid zygotes. While PBNT zygotes developed to blastocysts less frequently (42%) than controls (75%), genome-wide genetic, epigenetic, and transcriptional analyses of PBNT and control ESCs indicated comparable numbers of structural variations and markedly similar DNA methylation and transcriptome profiles. We conclude that rescue of PB1 genetic material via introduction into donor cytoplasm may offer a source of oocytes for infertility treatment or mitochondrial replacement therapy for mtDNA disease.


Subject(s)
Genome, Human , Nuclear Transfer Techniques , Oocytes/metabolism , Polar Bodies/metabolism , Adult , Blastocyst/metabolism , DNA Methylation/genetics , Embryonic Development/genetics , Epigenesis, Genetic , Female , Fertilization in Vitro , Gene Expression Profiling , Genomic Instability , Human Embryonic Stem Cells/metabolism , Humans , Male , Metaphase , Ploidies , Sequence Analysis, RNA , Spermatozoa/metabolism , Spindle Apparatus/metabolism , Transcription, Genetic
7.
Nature ; 540(7632): 270-275, 2016 12 08.
Article in English | MEDLINE | ID: mdl-27919073

ABSTRACT

Maternally inherited mitochondrial (mt)DNA mutations can cause fatal or severely debilitating syndromes in children, with disease severity dependent on the specific gene mutation and the ratio of mutant to wild-type mtDNA (heteroplasmy) in each cell and tissue. Pathogenic mtDNA mutations are relatively common, with an estimated 778 affected children born each year in the United States. Mitochondrial replacement therapies or techniques (MRT) circumventing mother-to-child mtDNA disease transmission involve replacement of oocyte maternal mtDNA. Here we report MRT outcomes in several families with common mtDNA syndromes. The mother's oocytes were of normal quality and mutation levels correlated with those in existing children. Efficient replacement of oocyte mutant mtDNA was performed by spindle transfer, resulting in embryos containing >99% donor mtDNA. Donor mtDNA was stably maintained in embryonic stem cells (ES cells) derived from most embryos. However, some ES cell lines demonstrated gradual loss of donor mtDNA and reversal to the maternal haplotype. In evaluating donor-to-maternal mtDNA interactions, it seems that compatibility relates to mtDNA replication efficiency rather than to mismatch or oxidative phosphorylation dysfunction. We identify a polymorphism within the conserved sequence box II region of the D-loop as a plausible cause of preferential replication of specific mtDNA haplotypes. In addition, some haplotypes confer proliferative and growth advantages to cells. Hence, we propose a matching paradigm for selecting compatible donor mtDNA for MRT.


Subject(s)
DNA, Mitochondrial/genetics , DNA, Mitochondrial/therapeutic use , Maternal Inheritance/genetics , Mitochondrial Diseases/genetics , Mitochondrial Diseases/pathology , Mitochondrial Replacement Therapy/methods , Mutation , Oocytes/metabolism , Blastocyst/cytology , Blastocyst/metabolism , Cell Line , Conserved Sequence/genetics , DNA, Mitochondrial/biosynthesis , Embryonic Stem Cells/cytology , Embryonic Stem Cells/metabolism , Female , Haplotypes/genetics , Humans , Male , Meiosis , Mitochondrial Diseases/metabolism , Mitochondrial Diseases/prevention & control , Oocyte Donation , Oocytes/cytology , Oocytes/pathology , Oxidative Phosphorylation , Pedigree , Polymorphism, Genetic
8.
Cell Stem Cell ; 18(5): 625-36, 2016 05 05.
Article in English | MEDLINE | ID: mdl-27151456

ABSTRACT

The genetic integrity of iPSCs is an important consideration for therapeutic application. In this study, we examine the accumulation of somatic mitochondrial genome (mtDNA) mutations in skin fibroblasts, blood, and iPSCs derived from young and elderly subjects (24-72 years). We found that pooled skin and blood mtDNA contained low heteroplasmic point mutations, but a panel of ten individual iPSC lines from each tissue or clonally expanded fibroblasts carried an elevated load of heteroplasmic or homoplasmic mutations, suggesting that somatic mutations randomly arise within individual cells but are not detectable in whole tissues. The frequency of mtDNA defects in iPSCs increased with age, and many mutations were non-synonymous or resided in RNA coding genes and thus can lead to respiratory defects. Our results highlight a need to monitor mtDNA mutations in iPSCs, especially those generated from older patients, and to examine the metabolic status of iPSCs destined for clinical applications.


Subject(s)
Aging/genetics , DNA, Mitochondrial/genetics , Induced Pluripotent Stem Cells/metabolism , Mutation/genetics , Adult , Aged , Blood Cells/metabolism , Fibroblasts/metabolism , Human Embryonic Stem Cells/metabolism , Humans , Skin/cytology
9.
Nature ; 524(7564): 234-8, 2015 Aug 13.
Article in English | MEDLINE | ID: mdl-26176921

ABSTRACT

Mitochondria have a major role in energy production via oxidative phosphorylation, which is dependent on the expression of critical genes encoded by mitochondrial (mt)DNA. Mutations in mtDNA can cause fatal or severely debilitating disorders with limited treatment options. Clinical manifestations vary based on mutation type and heteroplasmy (that is, the relative levels of mutant and wild-type mtDNA within each cell). Here we generated genetically corrected pluripotent stem cells (PSCs) from patients with mtDNA disease. Multiple induced pluripotent stem (iPS) cell lines were derived from patients with common heteroplasmic mutations including 3243A>G, causing mitochondrial encephalomyopathy and stroke-like episodes (MELAS), and 8993T>G and 13513G>A, implicated in Leigh syndrome. Isogenic MELAS and Leigh syndrome iPS cell lines were generated containing exclusively wild-type or mutant mtDNA through spontaneous segregation of heteroplasmic mtDNA in proliferating fibroblasts. Furthermore, somatic cell nuclear transfer (SCNT) enabled replacement of mutant mtDNA from homoplasmic 8993T>G fibroblasts to generate corrected Leigh-NT1 PSCs. Although Leigh-NT1 PSCs contained donor oocyte wild-type mtDNA (human haplotype D4a) that differed from Leigh syndrome patient haplotype (F1a) at a total of 47 nucleotide sites, Leigh-NT1 cells displayed transcriptomic profiles similar to those in embryo-derived PSCs carrying wild-type mtDNA, indicative of normal nuclear-to-mitochondrial interactions. Moreover, genetically rescued patient PSCs displayed normal metabolic function compared to impaired oxygen consumption and ATP production observed in mutant cells. We conclude that both reprogramming approaches offer complementary strategies for derivation of PSCs containing exclusively wild-type mtDNA, through spontaneous segregation of heteroplasmic mtDNA in individual iPS cell lines or mitochondrial replacement by SCNT in homoplasmic mtDNA-based disease.


Subject(s)
DNA, Mitochondrial/genetics , Induced Pluripotent Stem Cells/metabolism , Mitochondria/genetics , Mitochondria/metabolism , Mitochondrial Diseases/genetics , Mitochondrial Diseases/metabolism , Adenosine Triphosphate/metabolism , Animals , Cell Line , Embryo, Mammalian/cytology , Fibroblasts/cytology , Fibroblasts/metabolism , Fibroblasts/pathology , Gene Expression Profiling , Haplotypes/genetics , Humans , Leigh Disease/genetics , Leigh Disease/metabolism , Leigh Disease/pathology , Mice , Mitochondria/pathology , Mitochondrial Diseases/pathology , Mitochondrial Encephalomyopathies/genetics , Mitochondrial Encephalomyopathies/metabolism , Mitochondrial Encephalomyopathies/pathology , Mutation/genetics , Nuclear Transfer Techniques , Nucleotides/genetics , Oxygen Consumption , Polymorphism, Single Nucleotide/genetics , Sequence Analysis, RNA , Skin/cytology
10.
Nature ; 511(7508): 177-83, 2014 Jul 10.
Article in English | MEDLINE | ID: mdl-25008523

ABSTRACT

Human pluripotent stem cells hold potential for regenerative medicine, but available cell types have significant limitations. Although embryonic stem cells (ES cells) from in vitro fertilized embryos (IVF ES cells) represent the 'gold standard', they are allogeneic to patients. Autologous induced pluripotent stem cells (iPS cells) are prone to epigenetic and transcriptional aberrations. To determine whether such abnormalities are intrinsic to somatic cell reprogramming or secondary to the reprogramming method, genetically matched sets of human IVF ES cells, iPS cells and nuclear transfer ES cells (NT ES cells) derived by somatic cell nuclear transfer (SCNT) were subjected to genome-wide analyses. Both NT ES cells and iPS cells derived from the same somatic cells contained comparable numbers of de novo copy number variations. In contrast, DNA methylation and transcriptome profiles of NT ES cells corresponded closely to those of IVF ES cells, whereas iPS cells differed and retained residual DNA methylation patterns typical of parental somatic cells. Thus, human somatic cells can be faithfully reprogrammed to pluripotency by SCNT and are therefore ideal for cell replacement therapies.


Subject(s)
Cellular Reprogramming , Pluripotent Stem Cells/metabolism , Animals , Cell Line , Chromosome Aberrations , Chromosomes, Human, X/genetics , Chromosomes, Human, X/metabolism , DNA Copy Number Variations , DNA Methylation , Genome-Wide Association Study , Genomic Imprinting , Humans , Nuclear Transfer Techniques/standards , Pluripotent Stem Cells/cytology , Transcriptome
11.
PLoS One ; 8(4): e60534, 2013.
Article in English | MEDLINE | ID: mdl-23565256

ABSTRACT

Bone morphogenetic protein 6 (BMP6) is an essential cytokine for the expression of hepcidin, an iron regulatory hormone secreted predominantly by hepatocytes. Bmp6 expression is upregulated by increased iron-levels in the liver. Both hepatocytes and non-parenchymal liver cells have detectable Bmp6 mRNA. Here we showed that induction of hepcidin expression in hepatocytes by dietary iron is associated with an elevation of Bmp6 mRNA in the non-parenchymal cells of the liver. Consistently, incubation with iron-saturated transferrin induces Bmp6 mRNA expression in isolated hepatic stellate cells, but not in hepatocytes. These observations suggest an important role of the non-parenchymal liver cells in regulating iron-homeostasis by acting as a source of Bmp6.


Subject(s)
Bone Morphogenetic Protein 6/metabolism , Iron/metabolism , Liver/metabolism , Animals , Bone Morphogenetic Protein 6/genetics , Hepatocytes/metabolism , Male , Mice , Mice, Knockout , Real-Time Polymerase Chain Reaction , Signal Transduction/physiology
12.
J Biol Chem ; 287(42): 35104-35117, 2012 Oct 12.
Article in English | MEDLINE | ID: mdl-22893705

ABSTRACT

Hemojuvelin (HJV) and matriptase-2 (MT2) are co-expressed in hepatocytes, and both are essential for systemic iron homeostasis. HJV is a glycosylphosphatidylinositol-linked membrane protein that acts as a co-receptor for bone morphogenetic proteins to induce hepcidin expression. MT2 regulates the levels of membrane-bound HJV in hepatocytes by binding to and cleaving HJV into an inactive soluble form that is released from cells. HJV also interacts with neogenin, a ubiquitously expressed transmembrane protein with multiple functions. In this study, we showed that neogenin interacted with MT2 as well as with HJV and facilitated the cleavage of HJV by MT2. In contrast, neogenin was not cleaved by MT2, indicating some degree of specificity by MT2. Down-regulation of neogenin with siRNA increased the amount of MT2 and HJV on the plasma membrane, suggesting a lack of neogenin involvement in their trafficking to the cell surface. The increase in MT2 and HJV upon neogenin knockdown was likely due to the inhibition of cell surface MT2 and HJV internalization. Analysis of the Asn-linked oligosaccharides showed that MT2 cleavage of cell surface HJV was coupled to a transition from high mannose oligosaccharides to complex oligosaccharides on HJV. These results suggest that neogenin forms a ternary complex with both MT2 and HJV at the plasma membrane. The complex facilitates HJV cleavage by MT2, and release of the cleaved HJV from the cell occurs after a retrograde trafficking through the TGN/Golgi compartments.


Subject(s)
Cell Membrane/metabolism , GPI-Linked Proteins/metabolism , Membrane Proteins/metabolism , Multiprotein Complexes/metabolism , Proteolysis , Serine Endopeptidases/metabolism , Cell Membrane/genetics , GPI-Linked Proteins/genetics , Golgi Apparatus/genetics , Golgi Apparatus/metabolism , HEK293 Cells , Hemochromatosis Protein , Hep G2 Cells , Humans , Membrane Proteins/genetics , Multiprotein Complexes/genetics , Oligosaccharides/genetics , Oligosaccharides/metabolism , Protein Transport , Serine Endopeptidases/genetics
13.
Blood ; 117(5): 1687-99, 2011 Feb 03.
Article in English | MEDLINE | ID: mdl-21115976

ABSTRACT

Recent studies demonstrate a pivotal role for bone morphogenic protein-6 (BMP6) and matriptase-2, a protein encoded by the TMPRSS6 gene, in the induction and suppression of hepatic hepcidin expression, respectively. We examined their expression profiles in the liver and showed a predominant localization of BMP6 mRNA in nonparenchymal cells and exclusive expression of TMPRSS6 mRNA in hepatocytes. In rats fed an iron-deficient (ID) diet for 24 hours, the rapid decrease of transferrin saturation from 71% to 24% (control vs ID diet) was associated with a 100-fold decrease in hepcidin mRNA compared with the corresponding controls. These results indicated a close correlation of low transferrin saturation with decreased hepcidin mRNA. The lower phosphorylated Smad1/5/8 detected in the ID rat livers suggests that the suppressed hepcidin expression results from the inhibition of BMP signaling. Quantitative real-time reverse transcription polymerase chain reaction analysis revealed no significant change in either BMP6 or TMPRSS6 mRNA in the liver. However, an increase in matriptase-2 protein in the liver from ID rats was detected, suggesting that suppression of hepcidin expression in response to acute iron deprivation is mediated by an increase in matriptase-2 protein levels.


Subject(s)
Antimicrobial Cationic Peptides/metabolism , Bone Morphogenetic Proteins/metabolism , Hepatocytes/metabolism , Iron Deficiencies , Liver/metabolism , Membrane Proteins/metabolism , Serine Endopeptidases/metabolism , Animals , Antimicrobial Cationic Peptides/antagonists & inhibitors , Bone Morphogenetic Proteins/genetics , Hepcidins , Immunoblotting , In Situ Hybridization , Iron, Dietary/administration & dosage , Liver/cytology , Male , Membrane Proteins/genetics , RNA, Messenger/genetics , Rats , Rats, Sprague-Dawley , Reverse Transcriptase Polymerase Chain Reaction , Serine Endopeptidases/genetics , Transferrin/metabolism
14.
Dev Biol ; 310(2): 454-69, 2007 Oct 15.
Article in English | MEDLINE | ID: mdl-17850784

ABSTRACT

In Xenopus, primitive blood originates from the mesoderm, but extrinsic signals from the ectoderm are required during gastrulation to enable these cells to differentiate as erythrocytes. The nature of these signals, and how they are transcriptionally regulated, is not well understood. We have previously shown that bone morphogenetic proteins (BMPs) are required to signal to ectodermal cells to generate secondary non-cell-autonomous signal(s) necessary for primitive erythropoiesis, and that calmodulin-dependent protein kinase IV (CaM KIV) antagonizes BMP signaling. The current studies demonstrate that Gata-2 functions downstream of BMP receptor activation in these same cells, and is a direct target for antagonism by CaM KIV. We show, using loss of function analysis in whole embryos and in explants, that ectodermal Gata-2 is required for primitive erythropoiesis, and that BMP signals cannot rescue blood defects caused by ectoderm removal or loss of ectodermal GATA-2. Furthermore, we provide evidence that acetylation of GATA-2 is required for its function in primitive blood formation in vivo. Our data support a model in which Gata-2 is a transcriptional target downstream of BMPs within ectodermal cells, while activation of the CaM KIV signaling pathway alters GATA-2 function posttranslationally, by inhibiting its acetylation.


Subject(s)
Bone Morphogenetic Proteins/physiology , Calcium-Calmodulin-Dependent Protein Kinase Type 4/physiology , GATA2 Transcription Factor/physiology , Hematopoiesis , Xenopus Proteins/physiology , Xenopus/physiology , Animals , Ectoderm/physiology , Erythropoiesis , Female , Xenopus/embryology
SELECTION OF CITATIONS
SEARCH DETAIL
...