Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
BMC Bioinformatics ; 24(1): 479, 2023 Dec 15.
Article in English | MEDLINE | ID: mdl-38102551

ABSTRACT

Cancer prediction in the early stage is a topic of major interest in medicine since it allows accurate and efficient actions for successful medical treatments of cancer. Mostly cancer datasets contain various gene expression levels as features with less samples, so firstly there is a need to eliminate similar features to permit faster convergence rate of classification algorithms. These features (genes) enable us to identify cancer disease, choose the best prescription to prevent cancer and discover deviations amid different techniques. To resolve this problem, we proposed a hybrid novel technique CSSMO-based gene selection for cancer classification. First, we made alteration of the fitness of spider monkey optimization (SMO) with cuckoo search algorithm (CSA) algorithm viz., CSSMO for feature selection, which helps to combine the benefit of both metaheuristic algorithms to discover a subset of genes which helps to predict a cancer disease in early stage. Further, to enhance the accuracy of the CSSMO algorithm, we choose a cleaning process, minimum redundancy maximum relevance (mRMR) to lessen the gene expression of cancer datasets. Next, these subsets of genes are classified using deep learning (DL) to identify different groups or classes related to a particular cancer disease. Eight different benchmark microarray gene expression datasets of cancer have been utilized to analyze the performance of the proposed approach with different evaluation matrix such as recall, precision, F1-score, and confusion matrix. The proposed gene selection method with DL achieves much better classification accuracy than other existing DL and machine learning classification models with all large gene expression dataset of cancer.


Subject(s)
Algorithms , Neoplasms , Humans , Microarray Analysis , Neoplasms/genetics , Genetic Techniques , Machine Learning
2.
Chem Biodivers ; 20(8): e202201123, 2023 Aug.
Article in English | MEDLINE | ID: mdl-37394680

ABSTRACT

The most significant groupings of cold-blooded creatures are the fish family. It is crucial to recognize and categorize the most significant species of fish since various species of seafood diseases and decay exhibit different symptoms. Systems based on enhanced deep learning can replace the area's currently cumbersome and sluggish traditional approaches. Although it seems straightforward, classifying fish images is a complex procedure. In addition, the scientific study of population distribution and geographic patterns is important for advancing the field's present advancements. The goal of the proposed work is to identify the best performing strategy using cutting-edge computer vision, the Chaotic Oppositional Based Whale Optimization Algorithm (CO-WOA), and data mining techniques. Performance comparisons with leading models, such as Convolutional Neural Networks (CNN) and VGG-19, are made to confirm the applicability of the suggested method. The suggested feature extraction approach with Proposed Deep Learning Model was used in the research, yielding accuracy rates of 100 %. The performance was also compared to cutting-edge image processing models with an accuracy of 98.48 %, 98.58 %, 99.04 %, 98.44 %, 99.18 % and 99.63 % such as Convolutional Neural Networks, ResNet150V2, DenseNet, Visual Geometry Group-19, Inception V3, Xception. Using an empirical method leveraging artificial neural networks, the Proposed Deep Learning model was shown to be the best model.


Subject(s)
Deep Learning , Animals , Whales , Algorithms , Neural Networks, Computer , Image Processing, Computer-Assisted/methods
SELECTION OF CITATIONS
SEARCH DETAIL
...