Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 19 de 19
Filter
Add more filters










Publication year range
1.
ACS Biomater Sci Eng ; 2024 Jul 10.
Article in English | MEDLINE | ID: mdl-38982893

ABSTRACT

Achieving rapid clotting and clot stability are important unmet goals of clinical management of noncompressible hemorrhage. This study reports the development of a spatiotemporally controlled release system of an antihemorrhagic drug, etamsylate, in the management of internal hemorrhage. Gly-Arg-Gly-Asp-Ser (GRGDS) peptide-functionalized chitosan nanoparticles, with high affinity to bind with the GPIIa/IIIb receptor of activated platelets, were loaded with the drug etamsylate (etamsylate-loaded GRGDS peptide-functionalized chitosan nanoparticles; EGCSNP). Peptide conjugation was confirmed by LCMS, and the delivery system was characterized by DLS, SEM, XRD, and FTIR. In vitro study exhibited 90% drug release till 48 h fitting into the Weibull model. Plasma recalcification time and prothrombin time tests of GRGDS-functionalized nanoparticles proved that clot formation was 1.5 times faster than nonfunctionalized chitosan nanoparticles. The whole blood clotting time was increased by 2.5 times over clot formed under nonfunctionalized chitosan nanoparticles. Furthermore, the application of rheometric analysis revealed a 1.2 times stiffer clot over chitosan nanoparticles. In an in vivo liver laceration rabbit model, EGCSNP spatially localized at the internal injury site within 5 min of intravenous administration, and no rebleeding was recorded up to 3 h. The animals survived for 3 weeks after the injury, indicating the strong potential of the system for the management of noncompressible hemorrhage.

2.
Mater Horiz ; 11(13): 3104-3114, 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38687299

ABSTRACT

Self-assembly provides access to non-covalently synthesized supramolecular materials with distinct properties from a single building block. However, dynamic switching between functional states still remains challenging, but holds enormous potential in material chemistry to design smart materials. Herein, we demonstrate a chemical fuel-mediated strategy to dynamically switch between two distinctly emissive aggregates, originating from the self-assembly of a naphthalimide-appended peptide building block. A molecularly dissolved building block shows very weak blue emission, whereas, in the assembled state (Agg-1), it shows cyan emission through π stacking-mediated excimer emission. The addition of a chemical fuel, ethyl-3-(3-(dimethylamino)propyl)carbodiimide (EDC), converts the terminal aspartic acid present in the building block to an intra-molecularly cyclized anhydride in situ forming a second aggregated state, Agg-2, by changing the molecular packing, thereby transforming the emission to strong blue. Interestingly, the anhydride gets hydrolyzed gradually to reform Agg-1 and the initial cyan emission is restored. The kinetic stability of the strong blue emissive aggregate, Agg-2, can be regulated by the added concentration of the chemical fuel. Moreover, we expand the scope of this system within an agarose gel matrix, which allows us to gain spatiotemporal control over the properties, thereby producing a self-erasable writing system where the chemical fuel acts as the ink.

3.
Chemistry ; 29(37): e202300312, 2023 Jul 03.
Article in English | MEDLINE | ID: mdl-37084238

ABSTRACT

A single amino acid in a peptide sequence can play an important role to tune the self-assembly and hydrogelation behaviour. Here, a C-terminal cysteine-containing ultrashort peptide hydrogelator forms hydrogel through non-covalent and covalent interactions. Interestingly, the hydrogel is insoluble in water and buffer solutions at different pH values (1-13) and is thixotropic and injectable. In recent years, removing dyes from contaminated water has become a significant concern because of the shortage of freshwater resources. Therefore, the adsorption of dyes through a reliable, straightforward, nontoxic, cheap, and environmentally friendly adsorbent has become a popular topic. Hence, the hydrogelator was exploited to remove organic dyes from wastewater, harnessing its applicability in the gel phase and solid supports (filter paper and cotton).

4.
Gels ; 8(9)2022 Aug 25.
Article in English | MEDLINE | ID: mdl-36135245

ABSTRACT

Over the last couple of decades, stimuli-responsive supramolecular gels comprising synthetic short peptides as building blocks have been explored for various biological and material applications. Though a wide range of stimuli has been tested depending on the structure of the peptides, light as a stimulus has attracted extensive attention due to its non-invasive, non-contaminant, and remotely controllable nature, precise spatial and temporal resolution, and wavelength tunability. The integration of molecular photo-switch and low-molecular-weight synthetic peptides may thus provide access to supramolecular self-assembled systems, notably supramolecular gels, which may be used to create dynamic, light-responsive "smart" materials with a variety of structures and functions. This short review summarizes the recent advancement in the area of light-sensitive peptide gelation. At first, a glimpse of commonly used molecular photo-switches is given, followed by a detailed description of their incorporation into peptide sequences to design light-responsive peptide gels and the mechanism of their action. Finally, the challenges and future perspectives for developing next-generation photo-responsive gels and materials are outlined.

5.
Nat Commun ; 12(1): 6421, 2021 11 05.
Article in English | MEDLINE | ID: mdl-34741043

ABSTRACT

One-dimensional (1D) supramolecular polymers are commonly found in natural and synthetic systems to prompt functional responses that capitalise on hierarchical molecular ordering. Despite amphiphilic self-assembly being significantly studied in the context of aqueous encapsulation and autopoiesis, very little is currently known about the physico-chemical consequences and functional role of 1D supramolecular polymerisation confined in aqueous compartments. Here, we describe the different phenomena that resulted from the chemically triggered supramolecular fibrillation of synthetic peptide amphiphiles inside water microdroplets. The confined connection of suitable dormant precursors triggered a physically autocatalysed chemical reaction that resulted in functional environmental responses such as molecular uptake, fusion and chemical exchange. These results demonstrate the potential of minimalistic 1D supramolecular polymerisation to modulate the behaviour of individual aqueous entities with their environment and within communities.


Subject(s)
Peptides/chemistry , Hydrogen-Ion Concentration , Water/chemistry
6.
Chem Commun (Camb) ; 56(57): 7869-7872, 2020 Jul 21.
Article in English | MEDLINE | ID: mdl-32154814

ABSTRACT

Herein, we report the catalytic potential of short peptide based cross-ß amyloid nanotubes with surface exposed histidine capable of binding hemin and showing facile cascade reactions, playing the dual roles of hydrolases and peroxidases, two of the most important classes of enzymes in extant biology. The activity of these simple systems exceeded those of modern and larger proteins like cytochrome C and hemoglobin. Further, evidence suggested that these self-assembled nanotubes foreshadow the process of intermediate channeling, a feature seen in the case of advanced enzymes.


Subject(s)
Amyloid beta-Peptides/metabolism , Hydrolases/metabolism , Nanotubes/chemistry , Peroxidases/metabolism , Amyloid beta-Peptides/chemistry , Cytochromes c/chemistry , Cytochromes c/metabolism , Hemin/chemistry , Hemin/metabolism , Hemoglobins/chemistry , Hemoglobins/metabolism , Histidine/chemistry , Histidine/metabolism , Hydrolases/chemistry , Molecular Structure , Particle Size , Peroxidases/chemistry , Surface Properties
7.
Chem Sci ; 10(32): 7574-7578, 2019 Aug 28.
Article in English | MEDLINE | ID: mdl-31588307

ABSTRACT

Natural systems access transient high energy self-assembled structures for temporal regulation of different biological functions through dissipative processes. Compartmentalization within self-assembled structures is used by living systems to organize vital biochemical reactions that define cellular metabolism. Herein, we demonstrate a simple fatty acid based system where a redox active base (dimethylaminomethyl ferrocene, Fc-NMe2 ) acts as a countercation to access unique hexagonal compartments resulting in the formation of a self-supporting gel. An oxidizing environment helps in the dissipation of energy by converting Fc-NMe2 to oxidized waste and the gel autonomously undergoes transition to a sol. Hence, the system requires the addition of the fuel Fc-NMe2 to access the temporal gel state. Notably, these transient compartments were able to temporally upregulate and downregulate hemin-catalyzed oxidation reactions mimicking peroxidase, a ubiquitous enzyme in extant biology. An order of magnitude variation in k cat values was observed with time and the chemical reaction persists as long as the gel state was present.

8.
Chem Sci ; 10(23): 5920-5928, 2019 Jun 21.
Article in English | MEDLINE | ID: mdl-31360397

ABSTRACT

Unlike polymeric hydrogels, in the case of supramolecular hydrogels, the cross-linked network formation is governed by non-covalent forces. Hence, in these cases, the gelator molecules inside the network retain their characteristic physicochemical properties as no covalent modification is involved. Supramolecular hydrogels thus get dissolved easily in aqueous medium as the dissolution leads to a gain in entropy. Thus, any supramolecular hydrogel, insoluble in bulk water, is beyond the present understanding and hitherto not reported as well. Herein, we present a peptide-based (PyKC) hydrogel which remained insoluble in water for more than a year. Moreover, in the gel state, any movement of solvent or solute to and from the hydrogel is highly restricted resulting in a high degree of compartmentalization. The hydrogel could be re-dissolved in the presence of some biomolecules which makes it a prospective material for in vivo applications. Experimental studies and all atom molecular dynamics simulations revealed that a cysteine containing gelator forms dimers through disulfide linkage which self-assemble into PyKC layers with a distinct PyKC-water interface. The hydrogel is stabilized by intra-molecular hydrogen bonds within the peptide-conjugates and the π-π stacking of the pyrene rings. The unique confinement ability of the hydrogel is attributed to the slow dynamics of water which remains confined in the core region of PyKC via hydrogen bonds. The hydrogen bonds present in the confined water need activation energies to move through the water depleted hydrophobic environment of pyrene rings which significantly reduces water transport across the hydrogel. The compartmentalizing ability is effectively used to protect enzymes for a long time from denaturing agents like urea, heat or methanol. Overall, the presented system shows unique insolubility and confinement properties that could be a milestone in the research of soft-materials.

9.
Angew Chem Int Ed Engl ; 58(1): 244-247, 2019 01 02.
Article in English | MEDLINE | ID: mdl-30395376

ABSTRACT

In living systems, dissipative processes are driven by the endergonic hydrolysis of chemical fuels such as nucleoside triphosphates. Now, through a simple model system, a transient self-assembled state is realized by utilizing the catalytic effect of histidine on the formation and breaking of ester bonds. First, histidine facilitates the ester bond formation, which then rapidly co-assembles to form a self-supporting gel. An out-of-equilibrium state is realized owing to the cooperative catalysis by the proximal histidines in the assembled state, driving the second pathway and resulting in disassembly to sol. Cooperative effects that use the dual role of imidazoles as nucleophile and as proton donor is utilized to achieve transient assemblies. This simple system mimics the structural journey seen in microtubule formation where the substrate GTP facilitates the non-covalent assembly and triggers a cooperative catalytic process, leading to substrate hydrolysis and subsequent disassembly.

10.
Langmuir ; 35(2): 478-488, 2019 01 15.
Article in English | MEDLINE | ID: mdl-30561205

ABSTRACT

Cation-π and charge-transfer (CT) interactions are ubiquitous in nature and involved in several biological processes. Although the origin of both the interactions in isolated pairs has extensively been studied, CT interactions are more prominent in supramolecular chemistry. Involvement of cation-π interactions in the preparation of advanced functional soft materials is uncommon. Moreover, a combination of these two interactions within a pair of electron donor (D) and acceptor (A) is uncharted. Here, we present a rational design to incorporate a combination of these two interactions within a D-A pair. A pyrene-peptide conjugate exhibits a combination of cation-π and CT interactions with a cationic naphthalenediimide (NDI) molecule in water. Nuclear Overhauser effect spectroscopy NMR along with other techniques and density functional theory calculations reveal the involvement of these interactions. The π-planes of pyrene and NDI adopt an angle of 56° to satisfy both the interactions, whereas ß-sheet formation by the peptide sequence facilitates self-assembly. Notably, the binary system forms a self-supporting hydrogel at a higher concentration. The hydrogel shows efficient self-healing and injectable property. The hydrogel retains its thixotropic nature even at an elevated temperature. Broadly, we demonstrate a pathway that should prove pertinent to various areas, ranging from understanding biological assembly to peptide-based functional soft materials.

11.
Biomacromolecules ; 19(10): 3994-4002, 2018 10 08.
Article in English | MEDLINE | ID: mdl-30119603

ABSTRACT

Development of biocompatible polymeric systems capable of cell adhesion and proliferation is a challenging task. Proper cross-linking of small cell adhesive peptide sequences is useful in this respect as it provides the inherent nontoxic environment as well as the cross-linked polymeric network to the cells for adhesion and proliferation. A multiple cross-linking strategy is applied to create a peptide-based cross-linked polymer. Covalent linkage through disulfide bond formation, supramolecular linkage using homoternary complexation by CB[8], and enzymatic cross-linking by HRP-mediated dimerization of tyrosine are used to prepare the cross-linked, peptide-based polymer decorated with cell-adhesive RGDS sequence. The supramolecular cross-linking via CB[8] provided stability as well as brings the RGDS sequences at the surface of the polymer particles. The order of cross-linking allowed to fine-tune the particle size of the polymer and polymer particles of wide range (200-1000 nm) can be prepared by varying the order. The cross-linked polymer particles (P1 and P2) were found to be stable at wide range of temperature and pH. Moreover, as intended, the polymer was noncytotoxic in nature and showed efficient cell adhesion and proliferation property, which can be used for further biological applications.


Subject(s)
Biopolymers/chemistry , Cell Adhesion , Cell Proliferation , Cross-Linking Reagents/chemistry , Macrophages/physiology , Oligopeptides/chemistry , Animals , Biopolymers/pharmacology , Cells, Cultured , Horseradish Peroxidase/metabolism , Macrophages/cytology , Mice , Oligopeptides/pharmacology , Tyrosine/metabolism
12.
Langmuir ; 34(28): 8355-8364, 2018 07 17.
Article in English | MEDLINE | ID: mdl-29921124

ABSTRACT

Molecular organization of electron-deficient aromatic systems like perylenediimides (PDI) is extremely appealing, as they are potential candidates for organic electronics. The performance of these molecules in such applications primarily depends on the self-organization of the molecules. However, any correlation between the morphology of these self-assembled semiconducting molecules and their electrical performances has not yet been formulated. Herein, for the first time, we have made an effort to find such a correlation by studying the self-assembly, morphology, and their conducting properties for a peptide-PDI conjugate. The PDI conjugate formed fiber-like morphology in relatively nonpolar solvents (THF and CHCl3) while in more polar solvents (HFIP, MeOH, ACN, and acetone), spherical morphology could be found. Interestingly, the self-assembly and the morphologies showed a clear dependence on the solvent polarity. In polar solvents, the conjugate aggregates more efficiently than in the nonpolar solvents, and with decrease in solvent polarity, the dimension of the nanostructures increased. However, in all the tested solvents, irrespective of their polarity, the PDI-peptide conjugate adopts a right-handed helicity. To find a correlation between the morphologies with the conducting property, detailed electrical characterization of these nanostructures was carried out. While no significant change could be observed for the dc conductivities of these nanostructures, the ac conductivities show prominent difference at the low-frequency region. A dispersion of conductivity was observed for the nanospheres due to the polarization effect. A critical correlation between the nanostructures and the activation energy was observed as with decrease in radii of curvature of the aggregates the activation energy increases with an exception in the case of MeOH. The observed results suggest that the long-range transport of charge carriers is less favorable when the aggregates are small and closely packed.


Subject(s)
Imides/chemistry , Nanostructures/chemistry , Peptides/chemistry , Perylene/analogs & derivatives , Solvents/chemistry , Perylene/chemistry
13.
Biomacromolecules ; 18(11): 3630-3641, 2017 Nov 13.
Article in English | MEDLINE | ID: mdl-28879763

ABSTRACT

This study reports the self-assembly and application of a naphthalene diimide (NDI)-appended peptide amphiphile (PA). H-bonding among the peptide moiety in conjunction with π-stacking between NDI and hydrophobic interactions within the alkyl chain are the major driving forces behind the stepwise aggregation of the PA to form hydrogels. The PA produced efficient self-assemblies in water, forming a nanofibrous network that further formed a self-supportive hydrogel. The molecule followed a three-step self-assembly mechanism. At a lower concentration (50 µM), it forms extremely small aggregates with a very low population of the molecules. With an increase in concentration, spherical aggregates are formed above 450 µM concentration. Importantly, this water-soluble conjugate was found to be nontoxic, cell permeable, and usable for cell imaging. Moreover, the aggregation process and consequently the emission behavior are highly responsive to the pH of the medium. Thus, the pH responsive aggregation and emission behavior has an extended biological application for assessing intracellular pH. The biocompatibility and intracellular pH determining capability suggest it is a promising candidate for use as a supramolecular material in biomedical applications.


Subject(s)
Cell Tracking/methods , Hydrogels/chemistry , Imides/chemistry , Naphthalenes/chemistry , Peptides/chemistry , Biosensing Techniques , Cytoplasm/chemistry , Humans , Hydrogen Bonding , Hydrogen-Ion Concentration , Hydrophobic and Hydrophilic Interactions , Peptides/chemical synthesis , Water/chemistry
14.
Sci Rep ; 7(1): 9485, 2017 08 25.
Article in English | MEDLINE | ID: mdl-28842602

ABSTRACT

Understanding the regulatory factors of self-assembly processes is a necessity in order to modulate the nano-structures and their properties. Here, the self-assembly mechanism of a peptide-perylenediimide (P-1) conjugate in mixed solvent systems of THF/water is studied and the semiconducting properties are correlated with the morphology. In THF, right handed helical fibers are formed while in 10% THF-water, the morphology changes to nano-rings along with a switch in the helicity to left-handed orientation. Experimental results combined with DFT calculations reveal the critical role of thermodynamic and kinetic factors to control these differential self-assembly processes. In THF, P-1 forms right handed helical fibers in a kinetically controlled fashion. In case of 10% THF-water, the initial nucleation of the aggregate is controlled kinetically. Due to differential solubility of the molecule in these two solvents, elongation of the nuclei into fibers is restricted after a critical length leading to the formation of nano-rings which is governed by the thermodynamics. The helical fibers show superior semi-conducting property to the nano-rings as confirmed by conducting-AFM and conventional I-V characteristics.

15.
Chemphyschem ; 18(2): 245-252, 2017 Jan 18.
Article in English | MEDLINE | ID: mdl-27875014

ABSTRACT

A viologen-perylenediimide conjugate, denoted PDEV, is prepared for efficient base sensing. The conjugate shows solvatochromic behavior as well. The base sensitivity of viologen is purposefully coupled with the emission property of perylenediimide (PDI) to lower the detection limit. PDEV shows base-sensing ability at the ppb level, which is at least three orders of magnitude lower than those of previously reported sensors. The probe is sensitive toward solvent polarity and generates different shades of colors according to the polarity of the medium (solvent). The photophysical properties show a linear correlation with the solvent polarity, and this makes it an efficient solvatochromic agent. On the other hand, the generation of viologen radical cations by bases affects the aggregation and consequently the absorption and emission behavior of the PDI core. The effect of bases can also be visualized, because the probe generates different colors in the presence of bases, both under normal and under UV light. Organic amines can be detected even in the crystalline state, since the dark red color of the PDEV crystals changes to purple in a reversible fashion on exposure to amine vapors. An easy and practical paper-based tool created by using the probe can efficiently be used to detect solvent polarity and presence of bases optically.

16.
Soft Matter ; 11(24): 4912-20, 2015 Jun 28.
Article in English | MEDLINE | ID: mdl-26007304

ABSTRACT

A systematic study of the ternary complex formation process for aromatic amino acids using ucurbit[8]uril (CB[8]) and a viologen amphiphile shows that the affinity of the amino acid needs to be higher or in a comparable range to that of CB[8] for the amphiphile in order to form the ternary complex. Based on these observations, a supramolecular peptide amphiphile and its corresponding vesicle are prepared using a peptide containing an azobenzene moiety. The azobenzene group at the N-terminus of the peptide served as the second guest for CB[8]. The vesicles obtained from this peptide amphiphile show response to a number of external triggers. The trans-cis isomerization of the azobenzene group upon irradiation with UV-light of 365 nm leads to the breakdown of the ternary complex and eventually to the disruption of the vesicle. The deformation-reformation of the vesicle can be controlled by illuminating the disrupted solution with light of 420 nm as it facilitates the cis-trans isomerization. Thus, the vesicle showed a controlled and reversible response to UV-light with the ability for manipulation of the formation-deformation of the vesicle by the choice of an appropriate wavelength. The vesicle showed response to a stronger guest (1-adamantylamine) for CB[8], which displaces both the guests from the CB[8] cavity and consequently ruptures the vesicle structure. 2,6-Dihydroxynaphthalene acts as a competitive guest and thereby behaves as another external trigger for replacing the peptide from the CB[8] cavity by self-inclusion to form the ternary complex. Henceforth, it allows retaining the vesicle structure and results in the release of the peptide from the vesicle.


Subject(s)
Liposomes/chemistry , Peptides/chemistry , Surface-Active Agents/chemistry , Azo Compounds/chemistry , Bridged-Ring Compounds/chemistry , Imidazoles/chemistry , Liposomes/radiation effects , Naphthols/chemistry , Ultraviolet Rays , Viologens/chemistry
17.
Langmuir ; 30(39): 11528-34, 2014 Oct 07.
Article in English | MEDLINE | ID: mdl-25221863

ABSTRACT

A systematic study on the cucurbit[8]uril (CB[8]) assisted transformation of a mixed micellar system of CTAB and a viologen surfactant to vesicles is depicted. The micelle to vesicle transformation is assisted by a charge transfer complex mediated ternary complexation between the viologen group of the surfactant, CB[8], and 2,6-dihydroxynaphthalene. In the presence of CB[8], both the surfactants formed U-shaped binary inclusion complexes inside the CB[8] cavity, and no selective binding is observed. Upon addition of DHN, CB[8] showed two different self-sorting mechanisms. The U-shaped binary complex with CTAB breaks down, and CB[8] moves toward the viologen headgroup of the other surfactant to form a stable ternary complex. In the case of the viologen surfactant, CB[8] moved toward the headgroup leaving the hydrophobic tail free in order to form the ternary complex. The mechanistic detail of this micelle to vesicle transformation is revealed through methodical studies using (1)H and DOSY NMR, ESI-MS, ITC, and other instrumental techniques.

18.
Langmuir ; 30(28): 8290-9, 2014 Jul 22.
Article in English | MEDLINE | ID: mdl-24959928

ABSTRACT

A systematic study of the self-assembly process of a viologen-containing surfactant in aqueous medium is reported. Dodecyl-ethyl-viologendibromide (DDEV) is mixed in different proportions with dodecyltrimethylammonium bromide (DTAB), and the physicochemical properties of micellization are evaluated in order to find a suitable combination which does not interfere with the micellar properties of DTAB but introduces the characteristic properties of viologen. In this process, 1% doping of DDEV with DTAB was found to be the most appropriate, as negligible changes were observed in the physicochemical behavior of this system with respect to that of pure DTAB. The 1% DDEV-doped DTAB mixed micellar system showed the characteristic two-step reduction process for the viologen units at the interface as revealed by CV experiments. 1% mixing of DDEV with DTAB also allowed us to prepare stable w/o microemulsions containing viologen units at the interface which is otherwise unattainable with pure viologen surfactants. The charge-transfer capability of the viologen unit to the electron-rich 2,6-dihydroxynaphthalene (DHN) moiety inside the macrocyclic host, cucurbit[8]uril (CB[8]) is also evaluated for this system, and surprisingly even at this very low concentration, the ternary complex of DDEV-DHN@CB[8] transformed the micellar assembly to uniform vesicles. All of these properties have been further extended to other tetraalkylammonium surfactants, and similar effects were observed.

19.
Langmuir ; 29(46): 14274-83, 2013 Nov 19.
Article in English | MEDLINE | ID: mdl-24128085

ABSTRACT

A lysine based peptide amphiphile (PA) is designed and synthesized for efficient water immobilization. The PA with a minimum gelation concentration (MGC) of 1% w/v in water shows prolonged stability and can also efficiently immobilize aqueous mixtures of some other organic solvents. The presence of a free amine induced pH dependency of the gelation as the PA could form hydrogel at a pH range of 1-8 but failed to do so above that pH. Various spectroscopic and microscopic experiments such as steady state fluorescence, NMR, IR, CD, and FESEM reveal the presence of hydrophobic interaction, hydrogen bond, and π-π stacking interaction in the self-assembly process. The self-aggregation has been correlated with the design of the molecule to show the involvement of supramolecular forces and the hierarchical pathway. While the L analogue formed left-handed helical nanofibers, the other enantiomer showed opposite helicity. Interestingly the equimolar mixture of the isomers failed to form any fibrous aggregate. Although fibers formed at a subgel concentration, no helical nature was observed at this stage. The length and thickness of the fibers increased with increase in the gelator concentration. The nanofibers formed by the gelator are used as a template to prepare mesoporous single wall silica nanotubes (SWSNTs) in situ in plain water without the requirement of any organic solvent as well as any external hydrolyzing agent. The SWSNTs formed are open at both ends, are few micrometers in length, and have an average diameter of ~10 nm. The BET isotherm showed a type IV hysteresis loop suggesting mesoporous nature of the nanotubes.


Subject(s)
Hydrophobic and Hydrophilic Interactions , Nanofibers/chemistry , Nanotubes/chemistry , Peptides/chemistry , Silicon Dioxide/chemistry , Hydrogels/chemistry , Hydrogen Bonding , Hydrogen-Ion Concentration , Lysine/chemistry , Models, Molecular , Protein Structure, Secondary
SELECTION OF CITATIONS
SEARCH DETAIL
...