Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
2.
RSC Adv ; 13(31): 21318-21326, 2023 Jul 12.
Article in English | MEDLINE | ID: mdl-37465571

ABSTRACT

A low-cost, accurate, and highly selective method was used for the assessment of the human chorionic gonadotropin ß-hCG in the serum of breast and prostate cancer patients. This method is based on enhancing the intensity of luminescence displayed by the optical sensor N/S-doped carbon dots (CQDs) upon adding different concentrations of ß-hCG. The luminescent optical sensor was synthesized and characterized through absorption and emission and is tailored to present blue luminescence at λem = 345 nm and λex = 288 nm at pH 7.8 in DMSO. The enhancement of the luminescence intensity of the N/S-doped CQDs, especially, the characteristic band at λem = 345 nm, is typically used for determining ß-hCG in different serum samples. The dynamic range is 1.35-22.95 mU mL-1, and the limit of detection (LOD) and quantitation limit of detection (LOQ) are 0.235 and 0.670 mU mL-1, respectively. This method was practical, simple, and relatively free from interference effect. It was successfully applied to measure PCT in the samples of human serum, and from this method, we can assess some biomarkers of cancer-related diseases in human body.

3.
Spectrochim Acta A Mol Biomol Spectrosc ; 300: 122887, 2023 Nov 05.
Article in English | MEDLINE | ID: mdl-37224630

ABSTRACT

A novel, easy, touchy and selective spectrofluorimetric technique has been successfully applied for sensitive determination of High Sensitivity Cardiac Troponin (TNHS I) in the serum samples of patients suffering malignant tumors through the usage of optical sensor Eu3+-BINAM complex. The technique is primarily based on quenching of the Eu3+-BINAM complex's luminescence intensity upon introducing various concentrations of High Sensitivity Cardiac Troponin (TNHS I). The synthesis and characterization of the optical sensor was performed via absorption and emission. The sensor was also adapted to offer excitation at 394 nm in acetonitrile at pH 7.5. Concentration of High Sensitivity Cardiac Troponin (TNHS I) in serum samples was found to be proportional to the luminescence intensity quenching of the Eu3+-BINAM complex, most prominently at λem = 618 nm. The limit of the dynamic range is 4.26 × 10-4 to 2 ng/mL. The limit of detection and quantitation were calculated to be 1.35 and 4.10 ng/mL, respectively. The suggested analytical approach proved its applicability, simplicity and comparatively interference- free. The technique was effectively recruited to quantify High Sensitivity Cardiac Troponin (TNHS I) in human serum samples. The proposed technique could be further extended to evaluate some biomarkers associated with malignancy related diseases in human.


Subject(s)
Biomarkers, Tumor , Neoplasms , Humans , Troponin , Europium/chemistry , Luminescence , Neoplasms/diagnosis
SELECTION OF CITATIONS
SEARCH DETAIL
...