Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
Add more filters










Publication year range
1.
J Am Chem Soc ; 142(23): 10438-10445, 2020 06 10.
Article in English | MEDLINE | ID: mdl-32392047

ABSTRACT

An unsaturated polymer's cis/trans-olefin content has a significant influence on its properties. For polymers obtained by ring-opening metathesis polymerization (ROMP), the cis/trans-olefin content can be tuned by using specific catalysts. However, cis-selective ROMP has suffered from narrow monomer scope and lack of control over the polymerization (giving polymers with broad molecular weight distributions and prohibiting the synthesis of block copolymers). Herein, we report the versatile cis-selective controlled living ROMP of various endo-tricyclo[4.2.2.02,5]deca-3,9-diene and various norbornene derivatives using a fast-initiating dithiolate-chelated Ru catalyst. Polymers with cis-olefin content as high as 99% could be obtained with high molecular weight (up to Mn of 105.1 kDa) and narrow dispersity (<1.4). The living nature of the polymerization was also exploited to prepare block copolymers with high cis-olefin content for the first time. Furthermore, owing to the successful control over the stereochemistry and narrow dispersity, we could compare cis- and trans-rich polynorbornene and found the former to have enhanced resistance to shear degradation.


Subject(s)
Alkenes/chemical synthesis , Coordination Complexes/chemistry , Ruthenium/chemistry , Alkenes/chemistry , Catalysis , Molecular Structure , Polymerization , Stereoisomerism
2.
Chem Sci ; 11(20): 5273-5279, 2020 May 04.
Article in English | MEDLINE | ID: mdl-34122984

ABSTRACT

We describe the synthesis of Fe(ii)-based octahedral coordination cages supported by calixarene capping ligands. The most porous of these molecular cages has an argon accessible BET surface area of 898 m2 g-1 (1497 m2 g-1 Langmuir). The modular synthesis of molecular cages allows for straightforward substitution of both the bridging carboxylic acid ligands and the calixarene caps to tune material properties. In this context, the adsorption enthalpies of C2/C3 hydrocarbons ranged from -24 to -46 kJ mol-1 at low coverage, where facile structural modifications substantially influence hydrocarbon uptakes. These materials exhibit remarkable stability toward oxidation or decomposition in the presence of air and moisture, but application of a suitable chemical oxidant generates oxidized cages over a controlled range of redox states. This provides an additional handle for tuning the porosity and stability of the Fe cages.

3.
Chem Sci ; 10(39): 8955-8963, 2019 Oct 21.
Article in English | MEDLINE | ID: mdl-31762976

ABSTRACT

Cyclopolymerization (CP) of 1,6-heptadiyne derivatives is a powerful method for synthesizing conjugated polyenes containing five- or six-membered rings via α- or ß-addition, respectively. Fifteen years of studies on CP have revealed that user-friendly Ru-based catalysts promoted only α-addition; however, we recently achieved ß-selective regiocontrol to produce polyenes containing six-membered-rings, using a dithiolate-chelated Ru-based catalyst. Unfortunately, slow initiation and relatively low catalyst stability inevitably led to uncontrolled polymerization. Nevertheless, this investigation gave us some clues to how successful living polymerization could be achieved. Herein, we report living ß-selective CP by rational engineering of the steric factor on monomer or catalyst structures. As a result, the molecular weight of the conjugated polymers from various monomers could be controlled with narrow dispersities, according to the catalyst loading. A mechanistic investigation by in situ kinetic studies using 1H NMR spectroscopy revealed that with appropriate pyridine additives, imposing a steric demand on either the monomer or the catalyst significantly improved the stability of the propagating carbene as well as the relative rates of initiation over propagation, thereby achieving living polymerization. Furthermore, we successfully prepared diblock and even triblock copolymers with a broad monomer scope.

4.
J Am Chem Soc ; 141(1): 154-158, 2019 01 09.
Article in English | MEDLINE | ID: mdl-30537831

ABSTRACT

Δ12-Prostaglandin J family is recently discovered and has potent anticancer activity. Concise syntheses of four Δ12-prostaglandin J natural products (7-8 steps in the longest linear sequences) are reported, enabled by convergent stereoretentive cross-metathesis. Exceptional control of alkene geometry was achieved through stereoretention.


Subject(s)
Antineoplastic Agents/chemistry , Antineoplastic Agents/chemical synthesis , Prostaglandins/chemistry , Prostaglandins/chemical synthesis , Chemistry Techniques, Synthetic , Stereoisomerism
5.
Chem Sci ; 9(14): 3580-3583, 2018 Apr 14.
Article in English | MEDLINE | ID: mdl-29780490

ABSTRACT

The synthesis of E-macrocycles is achieved using stereoretentive, Ru-based olefin metathesis catalysts supported by dithiolate ligands. Kinetic studies elucidate marked differences in activity among the catalysts tested, with catalyst 4 providing meaningful yields of products in much shorter reaction times than stereoretentive catalysts 2 and 3. Macrocycles were generated with excellent selectivity (>99% E) and in moderate to high yields (47-80% yield) from diene starting materials bearing two E-configured olefins. A variety of rings were constructed, ranging from 12- to 18-membered macrocycles, including the antibiotic recifeiolide.

6.
Angew Chem Int Ed Engl ; 56(37): 11213-11216, 2017 09 04.
Article in English | MEDLINE | ID: mdl-28644909

ABSTRACT

A highly efficient, Z-selective ring-closing metathesis system for the formation of macrocycles using a stereoretentive, ruthenium-based catalyst supported by a dithiolate ligand is reported. The catalyst is remarkably active as observed in initiation experiments showing complete catalyst initiation at -20 °C within 10 minutes. Macrocyclization reactions generated Z-products from easily accessible diene starting materials bearing a Z-olefin moiety. This approach provides a more efficient and selective route to Z-macrocycles relative to previously reported systems. Reactions were completed within shorter reaction times, and turnover numbers of up to 100 could be achieved. Macrocyclic lactones ranging in size from twelve- to seventeen-membered rings were synthesized in moderate to high yields (67-79 %) with excellent Z-selectivity (95-99 %).


Subject(s)
Macrocyclic Compounds/chemical synthesis , Ruthenium/chemistry , Catalysis , Cold Temperature , Cyclization , Molecular Structure , Organometallic Compounds/chemical synthesis , Stereoisomerism
7.
Angew Chem Int Ed Engl ; 56(37): 11024-11036, 2017 09 04.
Article in English | MEDLINE | ID: mdl-28599101

ABSTRACT

Olefin metathesis is an incredibly valuable transformation that has gained widespread use in both academic and industrial settings. Lately, stereoretentive olefin metathesis has garnered much attention as a method for the selective generation of both E- and Z-olefins. Early studies employing ill-defined catalysts showed evidence for retention of the stereochemistry of the starting olefins at low conversion. However, thermodynamic ratios E/Z were reached as the reaction proceeded to equilibrium. Recent studies in olefin metathesis have focused on the synthesis of catalysts that can overcome the inherent thermodynamic preference of an olefin, providing synthetically useful quantities of a kinetically favored olefin isomer. These reports have led to the development of stereoretentive catalysts that not only generate Z-olefins selectively, but also kinetically produce E-olefins, a previously unmet challenge in olefin metathesis. Advancements in stereoretentive olefin metathesis using tungsten, ruthenium, and molybdenum catalysts are presented.


Subject(s)
Alkenes/chemistry , Catalysis , Kinetics , Molecular Structure , Molybdenum/chemistry , Ruthenium/chemistry , Stereoisomerism , Tungsten/chemistry
8.
J Am Chem Soc ; 139(4): 1532-1537, 2017 02 01.
Article in English | MEDLINE | ID: mdl-28107003

ABSTRACT

Ruthenium-based olefin metathesis catalysts bearing dithiolate ligands have been recently employed to generate olefins with high E-selectivity (>99% E) but have been limited by low to moderate yields. In this report, 1H NMR studies reveal that a major contributing factor to this low activity is the extremely low initiation rates of these catalysts with trans olefins. Introducing a 2-isopropoxy-3-phenylbenzylidene ligand in place of the conventional 2-isopropoxybenzylidene ligand resulted in catalysts that initiate rapidly under reaction conditions. As a result, reactions were completed in significantly less time and delivered higher yields than those in previous reports while maintaining high stereoselectivity (>99% E).

9.
Org Lett ; 18(4): 772-5, 2016 Feb 19.
Article in English | MEDLINE | ID: mdl-26840878

ABSTRACT

The first kinetically controlled, highly trans-selective (>98%) olefin cross-metathesis reaction is demonstrated using Ru-based catalysts. Reactions with either trans or cis olefins afford products with highly trans or cis stereochemistry, respectively. This E-selective olefin cross-metathesis is shown to occur between two trans olefins and between a trans olefin and a terminal olefin. Additionally, new stereoretentive catalysts have been synthesized for improved reactivity.

10.
Polyhedron ; 84: 144-149, 2014 Dec 14.
Article in English | MEDLINE | ID: mdl-25484484

ABSTRACT

Two new Ru-based metathesis catalysts, 3 and 4, have been synthesized for the purpose of comparing their catalytic properties to those of their cis-selective nitrate analogues, 1 and 2. Although catalysts 3 and 4 exhibited slower initiation rates than 1 and 2, they maintained high cis-selectivity in homodimerization and ring-opening metathesis polymerization reactions. Furthermore, the nitrite catalysts displayed higher cis-selectivity than 2 for ring-opening metathesis polymerizations, and 4 delivered higher yields of polymer.

SELECTION OF CITATIONS
SEARCH DETAIL
...