Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Type of study
Language
Publication year range
1.
Toxicol Res (Camb) ; 11(2): 339-347, 2022 Apr.
Article in English | MEDLINE | ID: mdl-35510236

ABSTRACT

Background: Cadmium (Cd) is a highly toxic heavy metal that adversely affects both human and animal health. Chronic cadmium exposure causes serious kidney damage. The current study investigated the protective role of cerium oxide nanoparticles (CeO2NPs) against cadmium chloride (CdCl2)-induced renal injury. Method: One hundred and twenty male albino rats were divided into 6 equal groups. Group (C): considered as control group which was given distilled water orally. Group (NC.1 and NC.5): rats were injected i.p. with nanoceria at a dose of (0.1 and 0.5 mg/kg b.wt), respectively, twice a week for 2 weeks starting at the 15th day of the study. Group (Cd): rats were received CdCl2 orally (10 mg/kg b.wt) daily for 28 days. Groups (Cd + NC.1 and Cd + NC.5): rats were given CdCl2 orally (10 mg/kg b.wt) for 28 days and CeO2NPs by i.p. injection at a dose of (0.1 and 0.5 mg/kg b.wt), respectively, twice a week for 2 weeks started at the 15th day of the experiment. Results: The Cd group exhibited a significant increase in the serum levels of IL-1ß, KIM-1, Cys-C, and ß2-MG, downregulation of the antioxidant initiator genes such as Nrf-2, and up-regulation of apoptosis markers such as nibrin gene (NBN). Urine examination showed a high level of microalbuminuria, abnormal physical, chemical, and microscopical changes in comparison with control groups. Conculsion: Remarkably, posttreatment with CeO2NPs showed significant improvement in kidney histopathological picture and relieved the alterations in kidney biomarkers, inflammatory markers, urine abnormalities, and expressions of different genes as Nrf-2 and NBN.

2.
Environ Sci Pollut Res Int ; 29(48): 72827-72838, 2022 Oct.
Article in English | MEDLINE | ID: mdl-35614356

ABSTRACT

This study aims to investigate the effect of Premna odorata (P. odorata) (Lamiaceae) on the hepatic and nephrotoxicity induced by aluminum chloride (AlCl3) in rat. Wistar male rats were equally classified into four groups: control, P. odorata extract (500 mg/kg B.W.), AlCl3 (70 mg/kg B.W.), and P. odorata extract plus AlCl3 groups. All treatments were given orally for 4 weeks. Serum transaminases and some biochemical parameters, hepatic and renal antioxidant/oxidant biomarker; tumor necrosis factor-α (TNF-α); matrix metalloproteinase (MMP9) and transforming growth factor-ß (TGF-ß) mRNA expression; histopathological examination of the liver, and kidneys were investigated. The obtained results revealed that AlCl3 significantly increased the activities of serum aspartate transaminase, alanine transaminase, and alkaline phosphatase as well as produced a significant increase in total cholesterol, triglyceride, urea, and creatinine concentrations, while there were no changes observed in the total protein, albumin, and globulin concentrations. Also, aluminum administration significantly decreased the reduced glutathione content and increased the catalase activity, malondialdehyde, and TNF-α concentrations in the liver and kidney tissue. Moreover, AlCl3 results in congestion, degeneration, and inflammation of the liver and kidney tissue. Co-treatment of P. odorata extract with AlCl3 alleviated its harmful effects on the previous parameters and reduced the histopathological alterations induced by AlCl3. Therefore, Premna odorata may have a potent protective effect against oxidative stress induced by Al toxicity through downregulation of MMP9 and TGF-ß gene expression.


Subject(s)
Antioxidants , Lamiaceae , Alanine Transaminase/metabolism , Albumins/metabolism , Albumins/pharmacology , Alkaline Phosphatase/metabolism , Aluminum/metabolism , Aluminum/toxicity , Aluminum Chloride , Animals , Antioxidants/metabolism , Aspartate Aminotransferases/metabolism , Biomarkers/metabolism , Catalase/metabolism , Cholesterol/metabolism , Creatinine/metabolism , Glutathione/metabolism , Lamiaceae/metabolism , Liver , Male , Malondialdehyde/metabolism , Matrix Metalloproteinase 9/genetics , Matrix Metalloproteinase 9/metabolism , Oxidants/metabolism , Oxidative Stress , RNA, Messenger/metabolism , Rats , Rats, Wistar , Transforming Growth Factor beta/genetics , Transforming Growth Factor beta/metabolism , Transforming Growth Factors/metabolism , Transforming Growth Factors/pharmacology , Triglycerides/metabolism , Tumor Necrosis Factor-alpha/metabolism , Urea/metabolism
3.
Microb Pathog ; 163: 105410, 2022 Feb.
Article in English | MEDLINE | ID: mdl-35041974

ABSTRACT

Infectious bronchitis virus (IBV) is one of the major respiratory diseases of broiler causing huge economic losses. The inability to control IBV using different vaccination programs owing to the high mutation rate and recombination ability of the RNA genome generates IBV variants. This study was designed to give a specific perspective of carvacrol effect on early immune response, viral shedding titer, oxidative stress, serum biochemical parameters and clinical consequences in broilers experimentally infected by IBV. One hundred and twenty-one-day old commercial broiler chicks were equally divided into 4 groups. First group was considered as control. Second group was given carvacrol, third group was infected with IBV and fourth group was given carvacrol and infected with IBV. Infection with variant IBV induced significant upregulation of chicken interferon-inducible transmembrane protein 3 (chIFITM3) gene in trachea, elevations in serum levels of Alpha-1 acid glycoprotein (α1-AGP) and Interleukin 6 (IL-6), total leucocytic count (TLC), heterophil/lymphocyte (H/L) ratio and oxidative stress in lung and kidney tissues. Beside, histopathological changes in trachea, lung and kidney induced by IBV, elevation of kidney function tests was detected. The pretreatment with carvacrol significantly reduced viral shedding titer, chIFITM3 gene expression, IL-6 and α1-AGP levels, leucocytic response and H/L ratio with minimization of clinical signs intensity. Also, carvacrol relieved oxidative stress, ameliorated the increased uric acid level and histopathological alterations in kidney and lung caused by viral infection.


Subject(s)
Coronavirus Infections , Infectious bronchitis virus , Poultry Diseases , Viral Vaccines , Acute-Phase Reaction , Animals , Chickens , Coronavirus Infections/veterinary , Cymenes , Virus Shedding
4.
Ecotoxicol Environ Saf ; 209: 111820, 2021 Feb.
Article in English | MEDLINE | ID: mdl-33385678

ABSTRACT

The objective of this study was to investigate the influence of deltamethrin (DLM)on brain function and to find whether DLM-induced neurotoxicity is prevented by the treatment with cinnamon oil. Four groups of ten Wistar albino male rats each were used. Group I (control) received saline only. Group II received cinnamon oil alone at 0.5 mg/kg B.W. intraperitonally, whereas Group III received orally DLM alone at 6 mg/kg B.W. Groups IV was treated with cinnamon oil plus DLM for 21 days to induce neurotoxicity. Rat behaviour, brain acetylcholine esterase (AChE), serotonin, oxidative stress profile were assessed. Serum sampling for the assessment of corticosterone concentration was also carried out. Finally, we demonstrate the gene expression of CYP1A1 and iNOS and the histological picture of the brain. Considering the behaviour assessment, DLM administration alone caused neurobehavioral deficits manifested by anxiety-like behavior which represented ina marked decrease in the sleeping frequency and duration, and marked increase the digging frequency and a wake non-active behavior duration. Moreover, the open field result showed a significant decrease in central square entries and duration. The neurochemical analysis revealed that DLM significantly suppressed AChE activity and elevated serotonin and corticosterone concentrations. Furthermore, results revealed thatthe brain reduced glutathione (GSH) content, superoxide dismutase (SOD) activity and malondialdehyde (MDA) concentration were significantly altered in DLM treated rats. Neurochemical disturbances were confirmed by histopathological changes in the brain. Furthermore, DLM up-regulates the mRNA expression of brain CYP1A1 and iNOS. Co-treatment with cinnamon oil exhibited significant improvement in behavioural performance and the brain antioxidant capacities with an increase in AChE activity and diminished the concentration of serotonin, serum corticosterone and MDA. Cinnamon oil treatment resulted in down-regulation of CYP1A1 and iNOS and improve the histologically picture. In conclusion, cinnamon oil ameliorated DLM-induced neurotoxicity through preventing oxidative stress-induced genotoxicity and apoptosis of brain in rats.


Subject(s)
Cinnamomum zeylanicum , Cytochrome P-450 CYP1A1/metabolism , Insecticides/toxicity , Neurotransmitter Agents/pharmacology , Nitriles/toxicity , Oils, Volatile/pharmacology , Pyrethrins/toxicity , Animals , Antioxidants/metabolism , Apoptosis/drug effects , Brain/drug effects , Glutathione/metabolism , Male , Malondialdehyde/metabolism , Oxidative Stress/drug effects , Rats , Rats, Wistar
5.
Environ Sci Pollut Res Int ; 28(2): 2146-2157, 2021 Jan.
Article in English | MEDLINE | ID: mdl-32870428

ABSTRACT

Premna odorata Blanco (Lamiaceae) is an ethnomedicinal plant, where some reports claimed their anti-inflammatory, cytotoxic, and antituberculosis effects, without investigating its role on the brain. Therefore, forty mature male rats were equally divided into 4 groups; the 1st was kept as control. Rats in groups 2 and 4 were orally given P. odorata extract daily at a dose of 500 mg/kg B.W., while those in groups 3 and 4 were daily administrated aluminum chloride "AlCl3" (70 mg/kg B.W.). The treatments extended for 30 successive days. At the end of the experimental period, brain samples were collected for biochemical assay of glutathione reductase (GSH), catalase, malondialdehyde (MDA), and acetylcholinesterase activity (AChE). Besides, monoamines (norepinephrine, dopamine, serotonin), amino acids (glutamine, serine, arginine, taurine and gamma-aminobutyric acid (GABA)), neurotransmitters, DNA damage, cyclooxygenase-2 (COX-2), and tumor necrosis factor (TNF)-α genes were estimated. Moreover, brain samples were obtained for histopathological investigation. Aluminum toxicity resulted in a decline of GSH concentration, elevation of MDA, and AChE activity. Except for GABA which exhibited a significant decrease, there was a marked increase in the measured amino acid and monoamine neurotransmitters. Also, an increase in mRNA expressions of TNF-α and COX-2 was detected. It was noticed that Premna odorata extract reduced the oxidative stress and counteracted the augmentations in AChE caused by AlCl3. Marked improvements in most measured neurotransmitters with downregulation of pro-inflammatory gene expression were recorded in P. odorata + AlCl3 group. Premna odorata restores the altered histopathological feature induced by AlCl3. In conclusion, the present findings clarify that P. odorata extract could be important in improving and treatment of neurodegenerative disorders as it was able to reduce oxidative stress, DNA damage, biochemical alterations, and histopathological changes in rats exposed to AlCl3 toxicity.


Subject(s)
Lamiaceae , Neurotoxicity Syndromes , Aluminum/toxicity , Aluminum Chloride , Aluminum Compounds , Animals , Male , Oxidative Stress , Plant Extracts , Rats
6.
Front Neurosci ; 10: 296, 2016.
Article in English | MEDLINE | ID: mdl-27445667

ABSTRACT

Most of the currently used toxicity assays for environmental chemicals use acute or chronic systemic or reproductive toxicity endpoints rather than neurobehavioral endpoints. In addition, the current standard approaches to assess reproductive toxicity are time-consuming. Therefore, with increasing numbers of chemicals being developed with potentially harmful neurobehavioral effects in higher vertebrates, including humans, more efficient means of assessing neuro- and reproductive toxicity are required. Here we discuss the use of a Galliformes-based avian test battery in which developmental toxicity is assessed by means of a combination of chemical exposure during early embryonic development using an embryo culture system followed by analyses after hatching of sociosexual behaviors such as aggression and mating and of visual memory via filial imprinting. This Galliformes-based avian test battery shows promise as a sophisticated means not only of assessing chemical toxicity in avian species but also of assessing the risks posed to higher vertebrates, including humans, which are markedly sensitive to nervous or neuroendocrine system dysfunction.

7.
Environ Toxicol Pharmacol ; 37(1): 431-7, 2014 Jan.
Article in English | MEDLINE | ID: mdl-24444696

ABSTRACT

In the present study, we investigated the potential protective effects of royal jelly against azathioprine-induced toxicity in rat. Intraperitoneal administration of azathioprine (50 mg/kgB.W.) induced a significant decrease in RBCs count, Hb concentration, PCV%, WBCs count, differential count and platelet count, hepatic antioxidant enzymes (reduced glutathione and glutathione s-transferase) and increase of serum transaminases (alanine aminotransferase and aspartate aminotransferase enzymes) activities, alkaline phosphatase and malondialdehyde formation. Azathioprine induced hepatotoxicity was reflected by marked pathological changes in the liver. Oral administration of royal jelly (200 mg/kgB.W.) was efficient in counteracting azathioprine toxicity whereas it altered the anemic condition, leucopenia and thrombocytopenia induced by azathioprine. Furthermore, royal jelly exerted significant protection against liver damage induced by azathioprine through reduction of the elevated activities of serum hepatic enzymes. Moreover, royal jelly blocked azathioprine-induced lipid peroxidation through decreasing the malondialdehyde formation. In conclusion, royal jelly possesses a capability to attenuate azathioprine-induced toxicity.


Subject(s)
Antimetabolites, Antineoplastic/toxicity , Azathioprine/toxicity , Chemical and Drug Induced Liver Injury/drug therapy , Fatty Acids/therapeutic use , Protective Agents/therapeutic use , Alanine Transaminase/blood , Alkaline Phosphatase/blood , Anemia/chemically induced , Anemia/drug therapy , Anemia/metabolism , Anemia/pathology , Animals , Aspartate Aminotransferases/blood , Chemical and Drug Induced Liver Injury/etiology , Chemical and Drug Induced Liver Injury/metabolism , Chemical and Drug Induced Liver Injury/pathology , Fatty Acids/pharmacology , Glutathione/metabolism , Leukopenia/chemically induced , Leukopenia/drug therapy , Leukopenia/metabolism , Leukopenia/pathology , Lipid Peroxidation/drug effects , Liver/drug effects , Liver/metabolism , Liver/pathology , Male , Protective Agents/pharmacology , Rats , Rats, Wistar , Thrombocytopenia/chemically induced , Thrombocytopenia/drug therapy , Thrombocytopenia/metabolism , Thrombocytopenia/pathology
SELECTION OF CITATIONS
SEARCH DETAIL
...